Page outline

  1. Introduction
  2. The Calvin Cycle
  3. Quiz: The Calvin Cycle
  4. Quiz: Comparing Photosynthesis and Respiration

1. Introduction

Let’s begin with an interactive reading to review some of what we’ve learned so far.

[qwiz qrecord_id=”sciencemusicvideosMeister1961-PSN, Part 5 Intro, Interactive Reading”]

[h]Photosynthesis, Part 5: Introduction

[i]

[q dataset_id=”SMV_PSN_Part 5 (Calvin Cycle) Introduction|171ddd77ccc756″ question_number=”1″]We’ve seen so far that photosynthesis involves two phases. The one indicated by “II” is called the [hangman] cycle.

[c]Q2Fsdmlu

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Part 5 (Calvin Cycle) Introduction|171d9e9a8bbb56″ question_number=”2″]The Calvin cycle takes the outputs of the light reactions, and along with carbon dioxide, uses them as inputs. Which number indicates carbon dioxide?

[textentry single_char=”true”]

[c]Ng ==[Qq]

[f]WWVzLiDigJw24oCdIGlzIGNhcmJvbiBkaW94aWRl[Qq]

[c]Kg==[Qq]

[f]Tm8uIEhlcmUmIzgyMTc7cyBhIGhpbnQuIEZpbmQgYW4gYXJyb3cgdGhhdCYjODIxNztzIGdvaW5nIGludG8gdGhlIENhbHZpbiBjeWNsZSwgYnV0IHdoaWNoIGlzIG5vdCBvbmUgb2YgdGhlIG91dHB1dHMgb2YgdGhlIGxpZ2h0IHJlYWN0aW9ucy4=

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Part 5 (Calvin Cycle) Introduction|171d6211569356″ question_number=”3″]Carbon dioxide, at “6,” can be considered the external input of the Calvin cycle. An internal input includes the reduced mobile electron carrier [hangman], which is shown at “5.”

[c]TkFEUEg=

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Part 5 (Calvin Cycle) Introduction|171d2588216b56″ question_number=”4″]One of the internal inputs of the Calvin cycle is the reduced mobile electron carrier NADPH, shown at “5” below. The other input is [hangman], indicated by “4.”

[c]QVRQ

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Part 5 (Calvin Cycle) Introduction|171ce8feec4356″ question_number=”5″]While the light reactions occur in the thylakoid sacs, the Calvin cycle occurs in the [hangman].

[c]c3Ryb21h

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Part 5 (Calvin Cycle) Introduction|171ca7cd9f5356″ question_number=”6″]Which letter or number shows the structures that carry out the light reactions?

[textentry single_char=”true”]

[c]YQ ==[Qq]

[f]WWVzLiBUaGUgbGV0dGVyIOKAnGHigJ0gaW5kaWNhdGVzIHRoZSB0aHlsYWtvaWRz[Qq]

[c]SQ ==[Qq]

[f]WWVzLiAmIzgyMjA7SSYjODIyMTsgc2hvd3MgYSBzdGFjayBvZiB0aHlsYWtvaWRzIChhbmQgaW5kaWNhdGVzIHRoZSBsaWdodCByZWFjdGlvbnMpLg==[Qq]

[c]Kg==[Qq]

[f]Tm8uIEhlcmUmIzgyMTc7cyBhIGhpbnQuIFRoZSBsaWdodCByZWFjdGlvbnMgb2NjdXIgaW4gdGhlIHRoeWxha29pZCBzYWNzLCB3aGljaCBhcmUgdGlueSBvdmFsIHN0cnVjdHVyZXMgd2l0aGluIHRoZSBjaGxvcm9wbGFzdCwgb3JnYW5pemVkIGludG8gc3RhY2tzLg==

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Part 5 (Calvin Cycle) Introduction|171c68f05e4756″ question_number=”7″]Which letter or number shows the area in the chloroplast where the Calvin cycle takes place? (Note: don’t enter a roman numeral)

[textentry single_char=”true”]

[c]Yg ==[Qq]

[f]WWVzLiBMZXR0ZXIg4oCcYuKAnSBpbmRpY2F0ZXMgdGhlIHN0cm9tYSwgd2hpY2ggaXMgd2hlcmUgdGhlIENhbHZpbiBjeWNsZSB0YWtlcyBwbGFjZS4=[Qq]

[c]Kg==[Qq]

[f]Tm8uIEhlcmUmIzgyMTc7cyBhIGhpbnQuIFRoZSBDYWx2aW4gY3ljbGUgb2NjdXJzIGluIHRoZSBlcXVpdmFsZW50IG9mIHRoZSBjeXRvcGxhc20gb2YgdGhlIGNobG9yb3BsYXN0JiM4MjExO3RoZSBmbHVpZCB0aGF0IGlzIGJldHdlZW4gdGhlIHRoeWxha29pZHMgYW5kIHRoZSBjaGxvcm9wbGFzdCYjODIxNztzIGlubmVyIG1lbWJyYW5lLg==

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Part 5 (Calvin Cycle) Introduction|171c256b057356″ question_number=”8″]To the extent that any biological process can be said to have a purpose, then the purpose of photosynthesis, from a plant’s perspective, is to create

[textentry single_char=”true”]

[c]Nw ==[Qq]

[f]WWVzLiBMZXR0ZXIg4oCcN+KAnSBpbmRpY2F0ZXMgY2FyYm9oeWRyYXRlLiBTeW50aGVzaXppbmcgY2FyYm9oeWRyYXRlcyBpcywgZnJvbSBhIHBsYW50JiM4MjE3O3MgcGVyc3BlY3RpdmUsIHRoZSBwdXJwb3NlIG9mIHBob3Rvc3ludGhlc2lzLg==[Qq]

[c]Kg==[Qq]

[f]Tm8uIEhlcmUmIzgyMTc7cyBhIGhpbnQuIFRoZSBwdXJwb3NlIG9mIHBob3Rvc3ludGhlc2lzLCBmcm9tIGEgcGxhbnQmIzgyMTc7cyBwZXJzcGVjdGl2ZSwgaXMgdG8gY3JlYXRlIHN1Z2FycyB0aGF0IGNhbiBiZSB1c2VkIGZvciBncm93dGggYW5kIGVuZXJneS4gV2hpY2ggcGFydCBvZiB0aGUgZGlhZ3JhbSBjb3VsZCByZXByZXNlbnQgYSBzdWdhcj8=[Qq]

[x][restart]

[/qwiz]

2. The Calvin Cycle

Let’s begin with the end in mind. Thus far in this series of tutorials, our vision of the Calvin Cycle has involved the diagram shown below, which you just worked with in the quiz above. Carbon dioxide enters the cycle from the atmosphere (or from water, if we were looking at an aquatic plant).  NADPH and ATP enter the cycle from the light reactions. Using these three inputs, the Calvin cycle produces simple sugars (which are the building blocks of carbohydrates).

By the end of this tutorial, you should be able to explain what’s going on in the diagram below, which shows the inputs, outputs, and key intermediate compounds of the Calvin cycle in a lot more detail. Let’s go.

Let’s start by talking about how this diagram works. There’s a legend on the top left, which tells you how to identify the carbon, hydrogen, oxygen, and phosphorus atoms that make up the molecules involved in the cycle. The letters “a” through “f” next to the structural formulas in the diagram represent molecules involved in the cycle (and you’ll learn their names in what follows). The numbers “1,” “3,” “5,” or “6” next to the structural formulas indicate the number of molecules. For example, find the letter “a” in the top right of the diagram (at about 1 o’clock), The “3” next to the structural formula for carbon dioxide indicates that there are three carbon dioxide molecules entering the cycle. Why does that matter? Because the Calvin cycle is how matter enters the biosphere, and it’s only by following the number of molecules (and atoms) that we’ll be able to see that happening.

RuBP (ribulose bisphosphate)

Phase 1: Carbon Fixation

Start by finding the molecule next to “f.” This is ribulose bisphosphate, also known as RuBP. You might remember that ribose, in RNA, is a five-carbon sugar. If you count the carbons in RuBP, you’ll also find five carbons. The “bisphosphate” part of the name relates to the fact that the molecule has two phosphate groups attached to it.

RuBP can be considered to be the end-point of the Calvin cycle. Because it’s a cycle, we can also consider RuBP to be the starting point. So, we’re going to start with three molecules of RuBP, for a total of 15 carbon atoms in the cycle.

3-phosphoglycerate

Now, follow the arrow from RuBP to a space-filling model of an enzyme called RuBisCo. “RuBisCo” is an abbreviation for ribulose bisphosphate carboxylate. This enzyme’s function is to take the RuBP (Ribulose Bisphosphate) that we just met, and combine it with carbon dioxide, shown at “a.” Keeping track of our carbons, what’s happening is that three molecules of RuBP are going to be combined with three molecules of carbon dioxide. Since RuBP has five carbon atoms, and carbon dioxide has one, you might expect that the result would be three, six-carbon molecules. That is what happens, but that six-carbon molecule is so unstable that it immediately dissociates into two three-carbon molecules. Because three of these six-carbon molecules have split themselves in half, we now have six three-carbon molecules called 3-phosphoglycerate, shown at “b.” That’s a total of 18 carbon atoms present at this point in the cycle.

Note that all of this has occurred within phase “I,” indicated by the top yellow third of the diagram. This is the “carbon fixation” phase of the Calvin cycle. In this phase, gaseous carbon dioxide gets pulled into living matter. As we discussed in the first tutorial in this module, every carbon atom in your body was once gaseous carbon dioxide in the air. Then it was in a plant. And now, either through a direct pathway (you ate the plant) or an indirect one (you ate an animal that ate the plant), it’s in you.

Phase II: Energy Investment and Harvest

In Phase II of the Calvin Cycle, the three-carbon molecule 3-phosphoglycerate gets phosphorylated and reduced. Here’s where the outputs of the light reactions (ATP and NADPH) become inputs for the Calvin Cycle. In step “c,” an enzyme takes a phosphate from ATP and places it onto 3-phosphoglycerate, creating 1,3-bisphosphoglycerate. In step “d,” another enzyme takes 1,3-bisphosphoglycerate and reduces it. In this step, energetic electrons (and hydrogen) from NADPH are transferred to 1,3-bisphosphoglycerate, which becomes glyceraldehyde-3-phosphate, or G3P. You can see the effects of this reduction by counting the number of hydrogen atoms in each compound. Which compound has more?

1, 3 bisphosphoglycerate

Glyceraldehyde-3-Phosphate (G3P)

G3P is the harvestable product of the Calvin Cycle. Note that from the moment that followed carbon fixation, we’ve had six, three-carbon molecules (for a total of 18 carbon atoms). Now the cell is going to harvest some of this reduced, energized G3P. When farmers harvest their crops, they remove the plants from their fields and use them (eating them or selling them). The cell will now do a similar thing, using the chemical energy in this three-carbon G3P for energy, or using the atoms for growth. That harvest is indicated on the lower left side of the Calvin Cycle diagram.

Phase III: Regeneration of RuBP

Ribulose-5-phosphate

Removing a G3P from the cycle leaves us with 15 carbon atoms: there were 18 carbons immediately following the carbon fixation phase, and we just removed three carbons in G3P. To prepare to run the cycle again, the chloroplast needs to regenerate the starting compound RuBP, and that’s what Phase III is all about. A series of enzymes take the five, three-carbon G3P molecules that the Calvin Cycle is left with after one of the G3Ps is harvested, and reorganizes them into three, five-carbon molecules. Note that we still have 15 carbon atoms.

This five-carbon molecule is called ribulose-5-phosphate (at “e” in the diagram, and also at the right). In terms of structure, ribulose-5-phosphate is very close to RuBP: it’s just missing one phosphate. Enzymes solve this problem by taking three ATPs, removing their phosphates, and attaching them to ribulose-5-phosphate. This re-creates the three molecules of 5-carbon RuBP that we’ll need for another round of carbon fixation.

What’s the take-away?

If you’re supplied with a diagram like the one above, you should be able to explain where carbon fixation, reduction, and phosphorylation, and rearrangements are happening. As you do this, the names of the intermediates are not important: you just need to remember “RuBP” and “G3P.”

In terms of concepts to remember, I’d suggest the following:

  1. During the Calvin cycle, the enzyme Rubisco carries out carbon fixation, combining carbon dioxide with the Calvin cycle’s starting and ending compound, RuBP.
  2. This is an endergonic process, and it’s powered by the energetic products of the light reactions, ATP and NADPH.
  3. Because it’s chemically powered (by ATP and NADPH), the Calvin cycle doesn’t need light to proceed. That’s why you’ll see it referred to as the “light-independent reactions,” or even the “dark reactions.”
  4. The product is the three-carbon sugar G3P, also known as glyceraldehyde-3-phosphate.

Got it? Try the quiz below.

3. The Calvin Cycle: Checking Understanding

[qwiz random = “true” width:700px” qrecord_id=”sciencemusicvideosMeister1961-PSN: Calvin Cycle, CFU”]

[h]Calvin Cycle: Checking Understanding

[i]

[q labels = “top” dataset_id=”SMV_PSN_Calvin Cycle Quiz|171a2e80fd1356″ question_number=”1″]

 

[l]Carbon Dioxide

[fx] No, that’s not correct. Please try again.

[f*] Excellent!

[l]Carbon Fixation Phase

[fx] No. Please try again.

[f*] Excellent!

 

[l]Energy Investment Phase

[fx] No. Please try again.

[f*] Excellent!

[l]G3P

[fx] No. Please try again.

[f*] Great!

[l]Phosphorylation

[fx] No. Please try again.

[f*] Great!

[l]Reduction

[fx] No, that’s not correct. Please try again.

[f*] Correct!

[l]RuBP

[fx] No, that’s not correct. Please try again.

[f*] Good!

[l]RuBP Regeneration Phase

[fx] No. Please try again.

[f*] Great!

[q dataset_id=”SMV_PSN_Calvin Cycle Quiz|1719f69fdfb356″ question_number=”2″]After carbon dioxide is combined with RuBP, the six carbon product immediately dissociates into which of the molecules shown below?

[textentry single_char=”true”]

[c]Yg ==[Qq]

[f]WWVzLiBMZXR0ZXIg4oCcYuKAnSBpbmRpY2F0ZXMgdGhlIHRocmVlLWNhcmJvbiBtb2xlY3VsZSB0aGF0IGFwcGVhcnMgaW4gdGhlIENhbHZpbiBjeWNsZSBpbW1lZGlhdGVseSBmb2xsb3dpbmcgY2FyYm9uIGZpeGF0aW9uLg==[Qq]

[c]Kg==[Qq]

[f]Tm8uIEhlcmUmIzgyMTc7cyBhIGhpbnQuIFVzZSB0aGUgbGVnZW5kICh1cHBlciByaWdodCkgdG8gZmlndXJlIG91dCB3aGljaCBtb2xlY3VsZSBpcyBjYXJib24gZGlveGlkZS4gUmlnaHQgbmVhcmJ5LCB5b3UmIzgyMTc7bGwgZmluZCB5b3VyIGFuc3dlci4=

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Calvin Cycle Quiz|1719bebec25356″ question_number=”3″]Which letter in the diagram below indicates RuBP, the starting and ending compound in the Calvin cycle.

[textentry single_char=”true”]

[c]Zg ==[Qq]

[f]WWVzLiBMZXR0ZXIg4oCcZuKAnSBpbmRpY2F0ZXMgUnVCUCwgdGhlIENhbHZpbiBjeWNsZSYjODIxNztzIHN0YXJ0aW5nIGFuZCBlbmRpbmcgY29tcG91bmQ=[Qq]

[c]Kg==[Qq]

[f]Tm8uIEhlcmUmIzgyMTc7cyBhIGhpbnQuIFVzZSB0aGUgbGVnZW5kICh1cHBlciByaWdodCkgdG8gZmlndXJlIG91dCB3aGljaCBtb2xlY3VsZSBpcyBjYXJib24gZGlveGlkZS4gUnVCUCBpcyB0aGUgbW9sZWN1bGUgdGhhdCBnZXRzIGNvbWJpbmVkIHdpdGggY2FyYm9uIGRpb3hpZGUgYXMgdGhlIENhbHZpbiBjeWNsZSBiZWdpbnMu

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Calvin Cycle Quiz|17197d8d756356″ question_number=”4″]Which letter in the diagram below shows a molecule that results from the chemical reduction that occurs within the Calvin cycle?

[textentry single_char=”true”]

[c]ZA ==[Qq]

[f]WWVzLiBMZXR0ZXIg4oCcZOKAnSBpbmRpY2F0ZXMgRzNQLCB3aGljaCByZXN1bHRzIHdoZW4gY29tcG91bmQgJiM4MjIwO2MmIzgyMjE7IGdldHMgcmVkdWNlZCwgcmVjZWl2aW5nIGVsZWN0cm9ucyBhbmQgaHlkcm9nZW4gZnJvbSBOQURQSC4=[Qq]

[c]Kg==[Qq]

[f]Tm8uIEhlcmUmIzgyMTc7cyBhIGhpbnQuIFRoZSBiaW9sb2dpY2FsIHJlZHVjdGlvbnMgaW4gdGhlIENhbHZpbiBjeWNsZSBpbnZvbHZlIGVsZWN0cm9ucyBhbmQgaHlkcm9nZW5zIHRoYXQgYXJlIGNvbnRyaWJ1dGVkIGJ5IE5BRFBILiBGaW5kIE5BRFBILCBhbmQgeW91JiM4MjE3O2xsIGhhdmUgeW91ciBhbnN3ZXIu

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Calvin Cycle Quiz|171945ac580356″ question_number=”5″]Which of the phases of the Calvin cycle involves carbon fixation?

[c]SSDCoC DCoCA=[Qq][c]SUkgwqAgwqAg[Qq][c]SUlJ

Cg==[Qq]

[f]WWVzLiBQaGFzZSBJIG9mIHRoaXMgQ2FsdmluIGN5Y2xlIGRpYWdyYW0gaW52b2x2ZXMgY2FyYm9uIGZpeGF0aW9uLg==[Qq]

[f]Tm8uIFRoaXMgaXMgdGhlIGVuZXJneSBpbnZlc3RtZW50IHBoYXNlLiBUaGVyZSBhcmUgcmVkdWN0aW9ucyBhbmQgcGhvc3Bob3J5bGF0aW9ucywgYnV0IG5vIGNhcmJvbiBmaXhhdGlvbi4gTG9vayBmb3IgYSBwaGFzZSB3aGVyZSBjYXJib24gaXMgY29taW5nIGludG8gdGhlIGN5Y2xlLg==[Qq]

[f]Tm8uIFRoaXMgaXMgdGhlIFJ1QlAgcmVnZW5lcmF0aW9uIHBoYXNlLiBMb29rIGZvciBhIHBoYXNlIHdoZXJlIGNhcmJvbiBpcyBjb21pbmcgaW50byB0aGUgY3ljbGUu

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Calvin Cycle Quiz|17190b772ebf56″ question_number=”6″]Which of the phases of the Calvin cycle shown below involves energy investment?

[c]SSDCoCDCoCA=[Qq][c]SUkgwq AgwqAg[Qq][c]SUlJ

Cg==[Qq]

[f]Tm8uIFBoYXNlIEkgb2YgdGhpcyBDYWx2aW4gY3ljbGUgZGlhZ3JhbSBpbnZvbHZlcyBjYXJib24gZml4YXRpb24uIExvb2sgZm9yIHRoZSBwaGFzZSB3aGVyZSBlbmVyZ3kgdHJhbnNmZXIgbW9sZWN1bGVzIChzdWNoIGFzIEFUUCBhbmQgTkFEUEgpIGFyZSBjb252ZXJ0ZWQgaW50byBsb3dlci1lbmVyZ3kgZm9ybXMu[Qq]

[f]WWVzLiBUaGlzIGlzIHRoZSBlbmVyZ3kgaW52ZXN0bWVudCBwaGFzZS4gVGhlcmUgYXJlIHJlZHVjdGlvbnMgYW5kIHBob3NwaG9yeWxhdGlvbnMsIGJvdGggb2Ygd2hpY2ggYWRkIGVuZXJneSB0byB0aGUgbW9sZWN1bGVzIGluIHRoZSBDYWx2aW4gY3ljbGUu[Qq]

[f]Tm8uIFRoaXMgaXMgdGhlIFJ1QlAgcmVnZW5lcmF0aW9uIHBoYXNlLiBMb29rIGZvciB0aGUgcGhhc2Ugd2hlcmUgZW5lcmd5IHRyYW5zZmVyIG1vbGVjdWxlcyAoc3VjaCBhcyBBVFAgYW5kIE5BRFBIKSBhcmUgY29udmVydGVkIGludG8gbG93ZXItZW5lcmd5IGZvcm1zLg==

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Calvin Cycle Quiz|1718d396115f56″ question_number=”7″]Which of the phases of the Calvin cycle shown below involves regeneration of RuBP?

[c]SSDCoCDCoCA=[Qq][c]SUkgwqAgwqAg[Qq][c]SU lJ

Cg==[Qq]

[f]Tm8uIFBoYXNlIEkgb2YgdGhpcyBDYWx2aW4gY3ljbGUgZGlhZ3JhbSBpbnZvbHZlcyBjYXJib24gZml4YXRpb24uIExvb2sgZm9yIGEgcGhhc2Ugd2hlcmUgdGhlIHN0YXJ0aW5nIGNvbXBvdW5kICh0aGUgNSBjYXJib24gbW9sZWN1bGUgUnVCUCkgaXMgYmVpbmcgcmVnZW5lcmF0ZWQu[Qq]

[f]Tm8uIFRoaXMgaXMgdGhlIGVuZXJneSBpbnZlc3RtZW50IHBoYXNlLiBMb29rIGZvciBhIHBoYXNlIHdoZXJlIHRoZSBzdGFydGluZyBjb21wb3VuZCAodGhlIDUgY2FyYm9uIG1vbGVjdWxlIFJ1QlApIGlzIGJlaW5nIHJlZ2VuZXJhdGVkLg==[Qq]

[f]WWVzLiBUaGlzIGlzIHRoZSBSdUJQIHJlZ2VuZXJhdGlvbiBwaGFzZS4=[Qq]
[x][restart]

[/qwiz]

4. Quiz: Making connections between Photosynthesis and Cellular Respiration

Note that in my sequence, I teach cellular respiration before photosynthesis. If your professor or teacher does the reverse order, then bookmark this page, and come back to it after you’ve learned about cellular respiration (when what’s below will make more sense).

Now that we’ve covered what you need to know about photosynthesis for a typical college or AP Biology course, let’s compare some of the key points of photosynthesis with its metabolic counterpart, cellular respiration. Note that to make a point, the diagram takes one liberty: what goes into a mitochondrion (“g”) is pyruvic acid, not glucose (or another simple sugar, indicated by “e”).

[qwiz random=”true” qrecord_id=”sciencemusicvideosMeister1961-PSN: Photosynthesis and Respiration” quiz_timer=”true”]

[h]Comparing Photosynthesis and Respiration

[i]If it suits your learning style, use the timer on the top right as a way to improve your accuracy and speed in the questions that follow. Otherwise, ignore it.

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|1716a276dfbb56″ question_number=”1″]In the diagram below, carbon dioxide is indicated by

[textentry single_char=”true”]

[c]bA ==[Qq]

[f]WWVzLiBMZXR0ZXIg4oCcbOKAnSBpbmRpY2F0ZXMgY2FyYm9uIGRpb3hpZGUu[Qq]

[c]Kg==[Qq]

[f]Tm8uIEhlcmUmIzgyMTc7cyBhIGhpbnQuIENhcmJvbiBkaW94aWRlIGlzIGEgZ2FzIHRoYXQmIzgyMTc7cyByZWxlYXNlZCBieSBtaXRvY2hvbmRyaWEgYXMgYSB3YXN0ZSBwcm9kdWN0IGFuZCB0YWtlbiBpbnRvIGNobG9yb3BsYXN0cyBhcyBhbiBpbnB1dC4=

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|171665edaa9356″ question_number=”2″]In the diagram below, oxygen is indicated by letter

[textentry single_char=”true”]

[c]Zg ==[Qq]

[f]WWVzLiBMZXR0ZXIg4oCcZuKAnSBpbmRpY2F0ZXMgb3h5Z2VuLCBhIHdhc3RlIHByb2R1Y3Qgb2YgcGhvdG9zeW50aGVzaXMsIGFuZCBpbnB1dCBmb3IgY2VsbHVsYXIgcmVzcGlyYXRpb24u[Qq]

[c]Kg==[Qq]

[f]Tm8uIEhlcmUmIzgyMTc7cyBhIGhpbnQuIEZpbmQgYSBnYXMgdGhhdCYjODIxNztzIGNvbWluZyBvdXQgb2YgYSBjaGxvcm9wbGFzdCAoJiM4MjIwO2EmIzgyMjE7KSwgYW5kIGdvaW5nIGludG8gYSBtaXRvY2hvbmRyaW9uICgmIzgyMjA7ZyYjODIyMTsp

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|17162bb8814f56″ question_number=”3″]In the diagram below, protons are pumped to which region of a chloroplast?

[textentry single_char=”true”]

[c]ZA ==[Qq]

[f]WWVzLiBMZXR0ZXIg4oCcZOKAnSBpbmRpY2F0ZXMgdGhlIHRoeWxha29pZCBzcGFjZSwgd2hpY2ggaXMgd2hlcmUgcHJvdG9ucyBhcmUgcHVtcGVkIHRvIGluIGEgY2hsb3JvcGxhc3Qu[Qq]

[c]Kg==[Qq]

[f]Tm8uIEhlcmUmIzgyMTc7cyBhIGhpbnQuIEZvciBBVFAgc3ludGhlc2lzIHRvIG9jY3VyLCBwcm90b25zIGhhdmUgdG8gYmUgcHVtcGVkIGludG8gYSBzbWFsbCBlbmNsb3NlZCBzcGFjZS4gRmluZCBhIHNwYWNlIGxpa2UgdGhhdCBpbiB0aGUgY2hsb3JvcGxhc3QgKCYjODIyMDthJiM4MjIxOyku

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|1715f3d763ef56″ question_number=”4″]In the diagram below, protons are pumped to which region of a mitochondrion?

[textentry single_char=”true”]

[c]aA ==[Qq]

[f]WWVzLiBMZXR0ZXIg4oCcaOKAnSBpbmRpY2F0ZXMgdGhlIGludGVybWVtYnJhbmUgc3BhY2UsIHdoaWNoIGlzIHdoZXJlIHByb3RvbnMgYXJlIHB1bXBlZCB0byBpbiBhIG1pdG9jaG9uZHJpb24u[Qq]

[c]Kg==[Qq]

[f]Tm8uIEhlcmUmIzgyMTc7cyBhIGhpbnQuIEZvciBBVFAgc3ludGhlc2lzIHRvIG9jY3VyLCBwcm90b25zIGhhdmUgdG8gYmUgcHVtcGVkIGludG8gYSBzbWFsbCBlbmNsb3NlZCBzcGFjZS4gRmluZCBhIHNwYWNlIGxpa2UgdGhhdCBpbiB0aGUgbWl0b2Nob25kcmlvbiAoJiM4MjIwO2cmIzgyMjE7KS4=

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|1715b74e2ec756″ question_number=”5″]In the diagram below, the electron transport chain in a mitochondrion would be found on

[textentry single_char=”true”]

[c]aQ ==[Qq]

[f]WWVzLiBUaGUgbGV0dGVyIOKAnGnigJ0gaW5kaWNhdGVzIHRoZSBpbm5lciBtaXRvY2hvbmRyaWFsIG1lbWJyYW5lLCB3aGljaCBpcyB3aGVyZSB0aGUgZWxlY3Ryb24gdHJhbnNwb3J0IGNoYWluIGlzIGxvY2F0ZWQu[Qq]

[c]Kg==[Qq]

[f]Tm8uIEhlcmUmIzgyMTc7cyBhIGhpbnQuIFRoZSBlbGVjdHJvbiB0cmFuc3BvcnQgY2hhaW4gaGFzIHRvIGJlIGxvY2F0ZWQgb24gYSBtZW1icmFuZSwgYW5kIGl0IGhhcyB0byBiZSBsb2NhdGVkIG5leHQgdG8gYW4gZW5jbG9zZWQgc3BhY2UgKHdoZXJlIHByb3RvbnMgY2FuIGJlIHB1bXBlZCB0bykuIEluIGEgbWl0b2Nob25kcmlvbiwgd2hhdCBsZXR0ZXIgY291bGQgaW5kaWNhdGUgYSBwYXJ0IHRoYXQgZml0cyB0aG9zZSByZXF1aXJlbWVudHM/

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|17157f6d116756″ question_number=”6″]In the diagram below, the electron transport chain in a chloroplast would be found on

[textentry single_char=”true”]

[c]Yw ==[Qq]

[f]WWVzLiBMZXR0ZXIg4oCcY+KAnSBpbmRpY2F0ZXMgdGhlIHRoeWxha29pZCBtZW1icmFuZSwgd2hpY2ggaXMgd2hlcmUgdGhlIGVsZWN0cm9uIHRyYW5zcG9ydCBjaGFpbiBpcyBsb2NhdGVkIGluIGEgY2hsb3JvcGxhc3Qu[Qq]

[c]Kg==[Qq]

[f]Tm8uIEhlcmUmIzgyMTc7cyBhIGhpbnQuIFRoZSBlbGVjdHJvbiB0cmFuc3BvcnQgY2hhaW4gaGFzIHRvIGJlIGxvY2F0ZWQgb24gYSBtZW1icmFuZSwgYW5kIGl0IGhhcyB0byBiZSBsb2NhdGVkIG5leHQgdG8gYW4gZW5jbG9zZWQgc3BhY2UgKHdoZXJlIHByb3RvbnMgY2FuIGJlIHB1bXBlZCB0bykuIEluIGEgY2hsb3JvcGxhc3QsIHdoYXQgbGV0dGVyIHdvdWxkIGluZGljYXRlIGEgcGFydCB0aGF0IGZpdHMgdGhvc2UgcmVxdWlyZW1lbnRzPw==

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|17152b9b655756″ question_number=”7″]In the diagram below, the Calvin cycle would occur at

[textentry single_char=”true”]

[c]Yg ==[Qq]

[f]WWVzLiBMZXR0ZXIg4oCcYuKAnSBpbmRpY2F0ZXMgdGhlIHN0cm9tYSwgd2hpY2ggaXMgd2hlcmUgdGhlIENhbHZpbiBjeWNsZSBvY2N1cnMu[Qq]

[c]Kg==[Qq]

[f]Tm8uIEhlcmUmIzgyMTc7cyBhIGhpbnQuIFRoZSBDYWx2aW4gY3ljbGUgb2NjdXJzIGluIGEgY2hsb3JvcGxhc3QsIG91dHNpZGUgb2YgdGhlIHRoeWxha29pZHMu

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|1714e5c2009f56″ question_number=”8″]In the diagram below, the Krebs cycle would occur at

[textentry single_char=”true”]

[c]ag ==[Qq]

[f]WWVzLiBMZXR0ZXIg4oCcauKAnSBpbmRpY2F0ZXMgdGhlIG1hdHJpeCwgd2hpY2ggaXMgd2hlcmUgdGhlIEtyZWJzIGN5Y2xlIG9jY3Vycy4=[Qq]

[c]Kg==[Qq]

[f]Tm8uIEhlcmUmIzgyMTc7cyBhIGhpbnQuIFRoZSBLcmVicyBjeWNsZSBvY2N1cnMgaW4gYSBtaXRvY2hvbmRyaW9uLCBpbiB0aGUgZmx1aWQgdGhhdCYjODIxNztzIGJvdW5kZWQgYnkgdGhlIGlubmVyIG1lbWJyYW5lLg==

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|17149d94900356″ question_number=”9″]In the diagram below, ATP synthase in a chloroplast would be found at

[textentry single_char=”true”]

[c]Yw ==[Qq]

[f]WWVzLiBMZXR0ZXIg4oCcY+KAnSBpbmRpY2F0ZXMgdGhlIHRoeWxha29pZCBtZW1icmFuZSwgd2hpY2ggaXMgd2hlcmUgdGhlIEFUUCBzeW50aGFzZSBjaGFubmVsL2VuenltZSBpcyBmb3VuZCBpbiBhIGNobG9yb3BsYXN0Lg==[Qq]

[c]Kg==[Qq]

[f]Tm8uIEhlcmUmIzgyMTc7cyBhIGhpbnQuIEFUUCBzeW50aGFzZSBpcyBhIGNoYW5uZWwgYW5kIGVuenltZSB0aGF0IHVzZXMgdGhlIGtpbmV0aWMgZW5lcmd5IG9mIGRpZmZ1c2luZyBwcm90b25zIHRvIGNhdGFseXplIHRoZSBmb3JtYXRpb24gb2YgQVRQIGZyb20gQURQIGFuZCBwaG9zcGhhdGUuIFRvIGZ1bmN0aW9uLCBpdCBoYXMgdG8gYmUgbG9jYXRlZCBvbiBhIG1lbWJyYW5lIHRoYXQgZW5jbG9zZXMgYSBjb25maW5lZCBzcGFjZSB0aGF0IHByb3RvbnMgY2FuIGJlIHB1bXBlZCBpbnRvLiBXaGljaCBtZW1icmFuZSBpbiBhIGNobG9yb3BsYXN0IGNvdWxkIGZpdCB0aGF0IGRlc2NyaXB0aW9uPw==

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|171455671f6756″ question_number=”10″]In the diagram below, ATP synthase in a mitochondrion would be found at

[textentry single_char=”true”]

[c]aQ ==[Qq]

[f]WWVzLiBUaGUgbGV0dGVyIOKAnGnigJ0gaW5kaWNhdGVzIHRoZSBpbm5lciBtaXRvY2hvbmRyaWFsIG1lbWJyYW5lLCB3aGljaCBpcyB3aGVyZSB0aGUgQVRQIHN5bnRoYXNlIGNoYW5uZWwvZW56eW1lIGlzIGZvdW5kIGluIGEgbWl0b2Nob25kcmlvbi4=[Qq]

[c]Kg==[Qq]

[f]Tm8uIEhlcmUmIzgyMTc7cyBhIGhpbnQuIEFUUCBzeW50aGFzZSBpcyBhIGNoYW5uZWwgYW5kIGVuenltZSB0aGF0IHVzZXMgdGhlIGtpbmV0aWMgZW5lcmd5IG9mIGRpZmZ1c2luZyBwcm90b25zIHRvIGNhdGFseXplIHRoZSBmb3JtYXRpb24gb2YgQVRQIGZyb20gQURQIGFuZCBwaG9zcGhhdGUuIFRvIGZ1bmN0aW9uLCBpdCBoYXMgdG8gYmUgbG9jYXRlZCBvbiBhIG1lbWJyYW5lIHRoYXQgZW5jbG9zZXMgYSBjb25maW5lZCBzcGFjZSB0aGF0IHByb3RvbnMgY2FuIGJlIHB1bXBlZCBpbnRvLiBXaGljaCBtZW1icmFuZSBpbiBhIG1pdG9jaG9uZHJpb24gY291bGQgZml0IHRoYXQgZGVzY3JpcHRpb24/

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|17140ae5a2e756″ question_number=”11″]Pretend that a chloroplast could have a goal (besides reproducing itself). If a chloroplast had a goal, what letter below could best represent it?

[textentry single_char=”true”]

[c]ZQ ==[Qq]

[f]WWVzLiBMZXR0ZXIg4oCcZeKAnSByZXByZXNlbnRzIGEgc2ltcGxlIHN1Z2FyLiBUaGF0JiM4MjE3O3MgdGhlIGtleSBvdXRwdXQgb2YgcGhvdG9zeW50aGVzaXMuIElmIGEgY2hsb3JvcGxhc3QgaGFkIGEgZ29hbCwgbWFraW5nIHN1Z2FyIHdvdWxkIGJlIGl0Lg==[Qq]

[c]Kg==[Qq]

[f]Tm8uIFRoaW5rIG9mIHRoZSBjaGxvcm9wbGFzdCBhcyBhbiBvcmdhbmVsbGUsIHdpdGggYSBmdW5jdGlvbi4gSXRzIGZ1bmN0aW9uIGlzIHRvIG1ha2Ugc29tZXRoaW5nLiBXaGF0IGlzIGl0Pw==

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|1713b96802bb56″ question_number=”12″]Pretend that a mitochondrion could have a goal (besides reproducing itself). If a mitochondrion had a goal, what letter below could best represent it?

[textentry single_char=”true”]

[c]aw ==[Qq]

[f]WWVzLiBMZXR0ZXIg4oCca+KAnSByZXByZXNlbnRzIEFUUC4gVGhhdCYjODIxNztzIHRoZSBrZXkgb3V0cHV0IG9mIGNlbGx1bGFyIHJlc3BpcmF0aW9uLiBJZiBhIG1pdG9jaG9uZHJpb24gaGFkIGEgZ29hbCwgbWFraW5nIEFUUCB3b3VsZCBiZSBpdC4=[Qq]

[c]Kg==[Qq]

[f]Tm8uIFRoaW5rIG9mIHRoZSBtaXRvY2hvbmRyaW9uIGFzIGFuIG9yZ2FuZWxsZSwgd2l0aCBhIGZ1bmN0aW9uLiBJdHMgZnVuY3Rpb24gaXMgdG8gbWFrZSBzb21ldGhpbmcuIFdoYXQgaXMgaXQ/

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|1713713a921f56″ question_number=”13″]What letter represents the energy that drives photosynthesis?

[textentry single_char=”true”]

[c]bg ==[Qq]

[f]WWVzLiBMZXR0ZXIg4oCcbuKAnSByZXByZXNlbnRzIGxpZ2h0LCB0aGUgZW5lcmd5IHRoYXQgZHJpdmVzIHBob3Rvc3ludGhlc2lzLg==[Qq]

[c]Kg==[Qq]

[f]Tm8uIFRoaW5rIG9mIHRoZSB3b3JkICYjODIyMDtwaG90b3N5bnRoZXNpcy4mIzgyMjE7IFRoZSAmIzgyMjA7cGhvdG8mIzgyMjE7IHBhcnQgcmVmZXJzIHRvIHdoYXQ/

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|17132b612d6756″ question_number=”14″]What letter represents the energy that drives cellular respiration?

[textentry single_char=”true”]

[c]ZQ ==[Qq]

[f]WWVzLiBMZXR0ZXIg4oCcZeKAnSByZXByZXNlbnRzIGEgc2ltcGxlIHN1Z2FyLiBUaGUgZW5lcmd5IGZyb20gdGhhdCBzdWdhciBpcyB3aGF0IGRyaXZlcyBjZWxsdWxhciByZXNwaXJhdGlvbi4=[Qq]

[c]Kg==[Qq]

[f]Tm8uIFRha2UgYSBsb29rIGF0IHRoZSBkaWFncmFtLCBhbmQgbG9vayBhdCB0aGUgdHdvIGlucHV0cyBmb3IgYSBtaXRvY2hvbmRyaW9uLiBPbmUgb2YgdGhlbSBwcm92aWRlcyB0aGUgZW5lcmd5IHRoYXQgZHJpdmVzIGNlbGx1bGFyIHJlc3BpcmF0aW9uLg==[Qq]

 

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|1712e587c8af56″ question_number=”15″]In the diagram below, the inputs provided to the Calvin cycle at letter “b” would include ATP and [hangman]

[c]TkFEUEg=[Qq]

 

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|1712a2026fdb56″ question_number=”16″]In the diagram below, the inputs provided to the Calvin cycle at letter “b” would include NADPH and [hangman]

[c]QVRQ

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|17125c290b2356″ question_number=”17″]In the diagram below, which letter indicates the source of the electrons that flow in non-cyclic electron flow?

[textentry single_char=”true”]

[c]bQ ==[Qq]

[f]WWVzLiBMZXR0ZXIg4oCcbeKAnSByZXByZXNlbnRzIHdhdGVyLCB3aGljaCBpcyB0aGUgc291cmNlIG9mIHRoZSBlbGVjdHJvbnMgaW4gbm9uLWN5Y2xpYyBlbGVjdHJvbiBmbG93Lg==[Qq]

[c]Kg==[Qq]

[f]Tm8uIFRha2UgYSBsb29rIGF0IHRoZSBkaWFncmFtLCBhbmQgbG9vayBhdCB0aGUgdHdvIGlucHV0cyBmb3IgYSBjaGxvcm9wbGFzdC4gT25lIG9mIHRoZW0gcHJvdmlkZXMgdGhlc2UgZWxlY3Ryb25zLg==[Qq]

 

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|171218a3b24f56″ question_number=”18″]The structure at “c” is a [hangman] membrane.

[c]dGh5bGFrb2lk[Qq]

 

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|1711d07641b356″ question_number=”19″]The enzyme found in both “c” and “i” that uses the flow of protons to generate ATP is called ATP [hangman]

[c]c3ludGhhc2U=[Qq]

 

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|171185f4c53356″ question_number=”20″]The particles that are pumped into “d” and “h” are [hangman]

[c]cHJvdG9ucw==[Qq]

 

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|1710fc9607a756″ question_number=”21″]The membrane transport process that brings protons from “d” to “b” and from “h” to “j” is [hangman] diffusion

[c]ZmFjaWxpdGF0ZWQ=[Qq]

[x][restart]

[/qwiz]

 

Links

This is the last tutorial in this series on photosynthesis. To return to the Photosynthesis Menu, click here. Otherwise, use any of the links above.