Unit 2 Review Table of Contents
- Unit 2 Review Video
- Learning Objectives
- Flashcards
- Multiple Choice Quiz 1
- Multiple Choice Quiz 2
- Practice FRQs
- Unit 2 Cell Parts and Functions Click-on Challenge
- Unit 2 Membranes Click-on Challenge
Unit 2 Review Video
1. Unit 2 Learning Objectives
Topics 2.1 and 2.2: Cell Structure and Function
- Explain the basic ideas of the cell theory
- Compare and contrast the basic features of prokaryotic and eukaryotic cells.
- Describe the structure and functions of the following cell parts
- nucleus
- cytoplasm
- cell membrane
- ribosomes
- Rough endoplasmic reticulum
- Smooth endoplasmic reticulum
- Golgi complex
- lysosomes
- mitochondria
- vacuoles
- chloroplasts
- cell wall
Topic 2.3: The Size of Cells (surface area to volume relationships)
- Explain how surface-area-to-volume ratios affect the ability of biological systems (cells, organisms, and groups of organisms) to obtain resources; eliminate wastes; or absorb or dissipate heat or other forms of energy from the environment.
- Explain how membrane surface area influences the size and shape of cells and organisms. Specifically:
- Why are cells small?
- Explain how, despite the limitation described above, organisms were able to increase in size.
- Explain various adaptations to increase or decrease surface area-to-volume ratios.
Topics 2.4 – 2.9: Cell Membrane Structure and Function; Osmosis See note 1
- Describe the fluid mosaic model of the cell membrane. Descriptions should include
- The overall function of the membrane
- The role of phospholipids (and how their structure results in the formation of phospholipid bilayers).
- The role of embedded proteins (how they fit into the bilayer, and their various roles)
- The functions of cholesterol, glycolipids, and glycoproteins.
- Define selective permeability.
- Explain how selective permeability arises from the fluid mosaic structure of the membrane.
- How small, nonpolar molecules like N2, CO2, and O2 can pass across the membrane
- How ions and large polar molecules move across the membrane
- How small polar molecules (like water) pass through the membrane
- Compare and contrast passive transport, active transport, and facilitated diffusion. Connect each process to membrane structure.
- Compare and contrast endocytosis and exocytosis.
- Define the term osmosis, and be able to predict and explain the flow of water into or out of cells in hypotonic, hypertonic, and isotonic environments.
- Explain the movement of water into or out of cells (and entire organisms) in relationship to water potential
- Be able to understand and use (but don’t memorize) the two water potential equations:
- the general water potential equation (Ψ = ΨS + ΨP : water potential = pressure potential + solute potential)
- The equation for solute potential: ΨS = – iCRT. See note 2
Topic 2.10: Cellular Compartmentalization (and its origins)
- Define the term “endomembrane system,” and describe that system’s overall function.
- List the key membrane-bound organelles found within eukaryotic cells, and describe the structure and function of each.
- Explain how compartmentalization is different in eukaryotic and prokaryotic cells
- Explain the evolutionary origins of mitochondria and chloroplasts, with supporting evidence.
- Describe the evidence for the endosymbiotic theory.
2. Unit 2 Flashcards
[qdeck style=”width: 550px !important; min-height: 400px !important;” qrecord_id=”sciencemusicvideosMeister1961-Unit 2 Flashcards (2.0)” dataset=”Unit 2 (cells and Membranes) cumulative flashcards” dataset_intro=”true”]
[h]Unit 2 Flashcards
[i]
[!]2.1-2.2.Cell Parts[/!]
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|229bc325df4cad” question_number=”1″ topic=”2.1-2.Cell_Parts_and_Functions”] Describe the structure, function, and evolutionary importance of ribosomes.
[a] Ribosomes are particles composed of ribosomal RNA and protein. The function of ribosomes is to read a genetic message encoded in a sequence of mRNA nucleotides and to translate that message into a sequence of amino acids that make up the primary structure of a protein.
You’ll learn later (in unit 6 ) that Ribosomes consist of large and small subunits that join together during protein synthesis.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” topic=”2.1-2.Cell_Parts_and_Functions” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|229b993d0944ad” question_number=”2″] 1) Describe the endoplasmic reticulum. 2) List the two forms of endoplasmic reticulum.
[a] 1. The endoplasmic reticulum is an interconnected series of channels found between the nuclear membrane and Golgi body in eukaryotic cells. 2. There are two forms of E.R., rough and smooth. The rough E.R. contains embedded ribosomes; the smooth E.R. does not.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” topic=”2.1-2.Cell_Parts_and_Functions” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|229b6d002758ad” question_number=”3″] Describe the structure and function of the rough E.R.
[a] The E.R. is an interconnected series of channels found between the nuclear membrane and Golgi body in eukaryotic cells. Rough ER is studded with ribosomes. Proteins that are destined for inclusion in a lysosome, in any other organelle, in the cell membrane, or for export from the cell are synthesized at the rough E.R.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” topic=”2.1-2.Cell_Parts_and_Functions” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|229b3e6f3988ad” question_number=”4″] Describe the structure and function of the smooth endoplasmic reticulum.
[a] The smooth E.R. is usually on the outer side of the ER network, between the rough ER and the Golgi. It lacks ribosomes but has many embedded enzymes. Functions (which vary by tissue) include the synthesis of lipids, converting toxins into soluble forms that can be excreted from the body, and playing various roles in carbohydrate breakdown and synthesis.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|229b0d8a3fd4ad” question_number=”5″ topic=”2.1-2.Cell_Parts_and_Functions”] Describe the structure and function of the Golgi complex.
[a] The Golgi complex consists of a series of membrane-bound flattened sacs. The Golgi receives vesicles from the rough and smooth E.R. and chemically modifies the contents of these vesicles (usually proteins). Once these proteins are modified, they’re packaged into vesicles that bud off from the outer side of the Golgi, and sent to organelles, to the cell membrane, or exported from the cell. Note that the Golgi complex is also called the Golgi body, or the Golgi apparatus.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|229ae14d5de8ad” question_number=”6″ topic=”2.1-2.Cell_Parts_and_Functions”] Describe the structure and function of mitochondria.
[a] Mitochondria are double-membraned organelles. The inner membrane is highly folded, an adaptation for increasing surface area. The inner membrane contains membrane-embedded proteins that make up the cellular machinery used to synthesize ATP during aerobic respiration.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|229ab0686434ad” question_number=”7″ topic=”2.1-2.Cell_Parts_and_Functions”] Describe the structure and function of lysosomes.
[a] Lysosomes are membrane-bound organelles that contain hydrolytic enzymes. They’re only found only in animal cells (though vacuoles play similar roles in plants, fungi, and algae).
One function of the lysosome is intracellular digestion. After a cell ingests a particle by endocytosis, the particle will be enclosed in a vesicle, which will fuse with a lysosome. Enzymes in the lysosome will digest the particle. Lysosomes also recycle worn-out, damaged, or excess organelles and molecules. They also play a key role in apoptosis (programmed cell death — discussed in another card).
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|229a81d77664ad” question_number=”8″ topic=”2.1-2.Cell_Parts_and_Functions”] Describe the structure and function of vacuoles.
[a] Vacuoles are membrane-bound organelles, generally used for storage. Plant cells contain a large central vacuole that stores water, and which also has a variety of other functions, including storing and releasing needed macromolecules, sequestering waste products, and maintaining turgor pressure.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|229a4e9e70ccad” question_number=”9″ topic=”2.1-2.Cell_Parts_and_Functions”] Describe the structure, evolutionary origin, and function of chloroplasts.
[a] Chloroplasts are the descendants of free-living photosynthetic bacteria. Chloroplasts, like mitochondria, are double-membraned organelles. Like mitochondria, they contain their own DNA and ribosomes and replicate themselves through binary fission. Their function is to create carbohydrates through photosynthesis.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|229a22618ee0ad” question_number=”10″ topic=”2.1-2.Cell_Parts_and_Functions”] Describe the chemical composition and the function of the plant cell wall.
[a] Plant cell walls are composed primarily of cellulose, a polysaccharide. The wall’s major function is to serve as a kind of pressure vessel that prevents the cell from over-expanding in response to osmotic pressure as water flows into a cell, causing it to expand. This maintains turgor pressure, keeping plant cells firm and preventing plants from wilting. The cell wall also plays a key structural role in plant stems, making up wood and tissue called xylem, the conductive tubes that allow water to move up a plant stem.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” topic=”2.1-2.Cell_Parts_and_Functions” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|2299ef288948ad” question_number=”11″] Where are two locations within a eukaryotic cell where ribosomes can be found?
[a] Free ribosomes (3) float freely in the cytoplasm. Bound ribosomes (4) are connected to the membrane of the rough ER (endoplasmic reticulum).
[!]2.3.Cell Size[/!]
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|2299be438f94ad” question_number=”12″ topic=”2.3.Cell_Size”] Use the relationship between surface area and volume to explain why cells are small.
In your explanation, compare surface area and volume for a cuboidal cell that’s one unit in length on a side to one that’s 10 units in length.
[a] Cells need to be small in order to have enough membrane surface area to allow for diffusion of substances in and out. That’s because as an object gets larger, its amount of surface area relative to its volume decreases.
The larger cell’s surface area to volume ratio is 1/10th that of the smaller cell. With such a small amount of surface area relative to its volume, a large cell can’t efficiently use diffusion to get the nutrients it needs in, and to release wastes.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” topic=”2.3.Cell_Size” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|22998d5e95e0ad” question_number=”13″] Explain the structure of root hairs, fish gills (below, left), or the lining of intestine (below, right) in terms of surface area to volume ratios.
[a] Structures like root hairs (tiny extensions that project from the outer tissue layer of roots) or gills (which are organized as thin sheets of tissue) are adaptations for increasing the surface for the diffusion of molecules. Similarly, the epithelial cells that make up the lining of the gut have a highly folded shape to increase the surface area for the diffusion of molecules from the gut into the body.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” topic=”2.3.Cell_Size” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|22995ecda810ad” question_number=”14″] Explain the structure of the inner mitochondrial membrane in terms of surface area.
[a] The inner mitochondrial membrane (shown at 2) is an adaptation for increasing the working surface for enzymatic reactions. As we’ll see in Unit 3, this increases the amount of ATP produced/mitochondrion.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” topic=”2.3.Cell_Size” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|2299303cba40ad” question_number=”15″] Explain the structure of the ears of elephants or jack rabbits in terms of surface area.
[a] The flat ears of elephants or the huge ears of jackrabbits are adaptations that increase surface area for radiating heat into the environment.
[!]2.4.Plasma Membranes[/!]
[q json=”true” yy=”4″ dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|2298fd03b4a8ad” question_number=”16″ unit=”2.Cell_Structure_and_Function” topic=”2.4-2.5.Plasma_Membranes”] Membranes are fundamental to life. Why?
[a] Cells are highly complex, organized structures. To maintain this organization, cells need to be separated from the environment that’s around them, and then work to maintain an internal environment that’s different from their external environment. The membrane is the basis of this separation, and many life processes are about moving things across membranes in a way that differentiates the internal environment of the cell from its external environment.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|2298adda2060ad” question_number=”17″ topic=”2.4-2.5.Plasma_Membranes”] Describe the role of phospholipids in cell membranes.
[a] The phospholipid bilayer makes up the framework of the cell membrane. The hydrophobic tails create a water-free zone (the inside of the membrane), while the hydrophilic heads face outwards toward the watery cell exterior and interior. This structure is further stabilized by weak bonds between the hydrophobic tails (called London dispersion forces).
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|22987cf526acad” question_number=”18″ topic=”2.4-2.5.Plasma_Membranes”] Describe how proteins fit into the cell membrane.
[a] Transmembrane proteins (1) have a central region with hydrophobic amino acid residues that integrate into the nonpolar inner portion of the bilayer, with hydrophilic regions extending into the watery cytoplasm and the cell exterior. Other proteins (5) might have a nonpolar region that embeds into the hydrophobic portion of the bilayer, with a hydrophilic region that juts into the cytoplasm or cell exterior. Peripheral proteins (3) attach to phospholipid heads that are either on the cytoplasm side of the membrane or the cell exterior.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|22984c102cf8ad” question_number=”19″ topic=”2.4-2.5.Plasma_Membranes”] Describe the importance of membrane proteins. See if you can think of functions that begin with each of these letters: CAPER
[a]
- Channels or ports for molecules that can’t diffuse through the phospholipid bilayer.
- Attachment points for the fibers of the cytoskeleton, allowing the cell to change its shape and move.
- Pumps for active transport.
- (Membrane-embedded) enzymes
- Receptors
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|22981d7f3f28ad” question_number=”20″ topic=”2.4-2.5.Plasma_Membranes”] Describe the fluid mosaic model of cell membranes.
[a] Cell membranes can be described as fluid mosaics. They’re fluid because their components are in constant motion, moving laterally within the plane of the membrane. They’re mosaics because they’re composed of a variety of pieces: phospholipids, proteins, and additional molecules like cholesterol. On the membrane’s inside and outside, various additional molecules might be attached to proteins or phospholipids, including glycoproteins and glycolipids.
[!]2.5.Membrane Permeability[/!]
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|2297eeee5158ad” question_number=”21″ topic=”2.6-7,_2.9.Membrane_Transport”] List the three overall processes by which membranes control a cell’s internal environment.
[a] Cell membranes control the cell’s internal environment through three overall processes: 1) by selectively controlling what molecules can diffuse into and out of cells, 2) through pumping molecules in or out of the cell by active transport, and 3) through bulk transport (endocytosis and exocytosis).
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|2297c2b16f6cad” question_number=”22″ topic=”2.6-7,_2.9.Membrane_Transport”] Explain how cells control what diffuses across their membranes.
[a] To begin with, there are some types of molecules that cells don’t control. For example, biological membranes allow small nonpolar molecules such as carbon dioxide, nitrogen, and oxygen to freely diffuse across the membrane’s phospholipid bilayer, following their diffusion gradient. That’s called simple diffusion.
However, polar molecules and ions won’t diffuse across a phospholipid bilayer. To allow their diffusion, cells have protein channels: transmembrane proteins that only let specific molecules or ions pass, depending on the cell’s needs. This is called facilitated diffusion.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|229791cc75b8ad” question_number=”23″ topic=”2.6-7,_2.9.Membrane_Transport”] How does water pass through a cell membrane?
[a] Water is a polar molecule, and polar molecules, in general, can’t diffuse through the phospholipid bilayer. But because water is a small molecule, small amounts of it can diffuse through the phospholipid portion of the membrane. In addition, to facilitate water’s passage through the membrane, cells produce channels called aquaporins: selective protein channels for water diffusion.
[!]2.6-2.7, 2.9.Membrane Transport[/!]
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” topic=”2.6-7,_2.9.Membrane_Transport” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|2297404ed58cad” question_number=”24″] Identify the three types of transport shown in the diagram below.
[a] 1. Simple diffusion. 2. Facilitated diffusion. 3. Active transport.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|2296eed13560ad” question_number=”25″ topic=”2.6-7,_2.9.Membrane_Transport”] Compare and contrast active and passive transport. As you do, explain what powers each process.
[a] Passive transport is transport that allows molecules or ions to follow their diffusion gradient, diffusing from high concentration to low concentration. Passive transport relies on the kinetic energy in the diffusing molecules or ions and doesn’t require any metabolic energy to be expended by the cell.
Active transport involves pumping a molecule or ion up its concentration gradient, from lower concentration to higher concentration. This requires energy on the part of the cell. This energy can be supplied by the conversion of ATP to ADP to power the pumping process. We’ll learn about some additional energy sources in AP Bio Unit 3.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” topic=”2.6-7,_2.9.Membrane_Transport” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|2296c2945374ad” question_number=”26″] Identify the three processes shown below.
[a] A. Phagocytosis. B. Pinocytosis. C. Receptor-mediated endocytosis.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|229696577188ad” question_number=”27″ topic=”2.6-7,_2.9.Membrane_Transport”] Compare and contrast endocytosis and exocytosis.
[a] Both endocytosis and exocytosis are forms of bulk transport. This process involves large-scale movements of the membrane, and usually requires the expenditure of cellular energy. In exocytosis, cells dump the contents of vesicles outside of the cell. In endocytosis, the membrane buckles in a way that surrounds a molecule, a particle, or some extracellular fluid, creating a cavity that becomes a vesicle.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|229667c683b8ad” question_number=”28″ topic=”2.6-7,_2.9.Membrane_Transport”] Describe the three different types of endocytosis.
[a]
- In pinocytosis, the membrane pinches in. Ultimately, a vesicle forms, surrounding some of the extracellular fluid and whatever was inside it.
- In receptor-mediated endocytosis, a piece of the membrane pinches in response to some molecule that binds with a receptor embedded in the membrane.
- During phagocytosis, the cell uses its membrane to surround a particle (or even another cell). The membrane pinches in to form a vesicle that enters the cytoplasm. Phagocytosis is used by white blood cells in the immune response to swallow invaders. Single-celled organisms like amoebas use phagocytosis to eat.
[!]2.8.Tonicity and Osmoregulation[/!]
[q json=”true” yy=”4″ dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|22963b89a1ccad” question_number=”29″ unit=”2.Cell_Structure_and_Function” topic=”2.8.Tonicity_and_Osmoregulation”] Explain the function of the contractile vacuole in freshwater protists such as Paramecia.
[a] Protists in freshwater are hypertonic to their freshwater environment. As a result, water moves into these cells by osmosis. To osmoregulate, many protists contain an organelle called a contractile vacuole. This organelle fills with water and then contracts to expel water from the cell. If the environment becomes more hypertonic (diminishing the water potential gradient) the cell can adapt by decreasing its rate of contractile vacuole contraction, and do the reverse in more hypotonic environments.
[q json=”true” yy=”4″ dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|22960cf8b3fcad” question_number=”30″ unit=”2.Cell_Structure_and_Function” topic=”2.8.Tonicity_and_Osmoregulation”] Explain how the central vacuole in a plant cell responds to changes in a plant’s environment.
[a] As water moves into a plant, following a water potential gradient, water will enter cells and move into a plant cell’s central vacuole. As the vacuole fills with water it expands, pushing against the plant cell wall. This outward pressure is called turgor, and it keeps plants full and firm (imagine a crispy lettuce leaf). If plants are low on water, the force of turgor diminishes, and plants wilt in response.
[q json=”true” yy=”4″ dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|2295dc13ba48ad” question_number=”31″ unit=”2.Cell_Structure_and_Function” topic=”2.8.Tonicity_and_Osmoregulation”] Use the principles of osmosis to explain each of the images below.
[a] The cell on the left is in an environment that’s hypertonic to the cell. Water leaves the cell, causing the membrane to peel away from the wall, a condition called plasmolysis. The plant as a whole will wilt. The cell in the center is in an environment that’s isotonic to the cell: water enters and leaves the cell at the same rate. The cell on the right is in a hypotonic environment. Water is flowing from the hypotonic environment into the cells. The pressure created as the membrane pushes against the wall is called turgor pressure (healthy condition for the plant).
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|2295ad82cc78ad” question_number=”32″ topic=”2.8.Tonicity_and_Osmoregulation”] Explain what happens to a cell in a hypotonic environment.
[a] If a cell is in a hypotonic environment, that means that the solution that the cell is in has less solute and more water than does the interior of the cell. Because water always flows from hypotonic (where the water is more concentrated) to hypertonic, water will flow from the hypotonic solution into the cell. This can be healthy for a plant cell, where the wall acts as a pressure vessel to contain the osmotic pressure. For animal cells, a hypotonic environment can be disastrous, causing the cell to burst.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” topic=”2.8.Tonicity_and_Osmoregulation” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|229560ad4414ad” question_number=”33″] Explain what happens to a cell in a hypertonic environment.
[a] When in a hypertonic environment, the solution outside the cell has relatively less water and more solute than the cell does. Because the cell is hypotonic to its environment, water will flow from the cell to its environment. The cell loses water.
Under these conditions, a plant cell will plasmolyze, with its membrane peeling away from its wall. An animal cell will shrivel.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” topic=”2.8.Tonicity_and_Osmoregulation” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|22950cdb9804ad” question_number=”34″] Explain what happens to a cell in an isotonic environment.
[a] A cell in an isotonic solution has the same concentration of solutes and water as the solution that it’s in. Water will flow into and out of the cell at the same rate, so it neither gains nor loses water.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|2294bdb203bcad” question_number=”35″ topic=”2.8.Tonicity_and_Osmoregulation”] What is water potential?
[a] Water potential is a measurement of water’s tendency to move from where it is to where it’s not, as determined by variables such as solute concentration and pressure. The basic idea is that water will always flow from areas of higher water potential to areas of lower water potential.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|229462e43400ad” question_number=”36″ topic=”2.8.Tonicity_and_Osmoregulation”] Explain the formula for water potential: Ψ = ΨS + ΨP (water potential = solute potential + pressure potential).
[a] In the formula Ψ = ΨS + ΨP ,
- Ψ represents water potential: water’s tendency to flow from where it is to where it’s not, based on a few other variables.
- ΨS is solute potential. Adding solute to water decreases its water potential. If that body of water is adjacent to an area with higher water potential, then the water will flow from the area with higher water potential (with less solute) to the area with the lower potential (with more solute). This is exactly like how water will flow from a hypotonic area to a hypertonic area.
- Ψp is pressure potential. Adding pressure (like pressing on the plunger in a syringe) increases water potential, causing water to flow away from that higher pressure area toward an area with lower pressure (and lower water potential).
[!]2.10.Cellular Compartmentalization[/!]
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” topic=”2.10.Cellular_Compartmentalization” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|229438fb5df8ad” question_number=”37″] What are the key compartments within eukaryotic cells. How is this different in animal and plant cells?
[a] Cellular compartments in eukaryotes include all membrane-bound structures. In animal cells, that includes the nucleus, the mitochondria, and the parts of the endomembrane system (E.R., Golgi, lysosomes, vacuoles, and vesicles). In plant cells, there’s also a large central vacuole, chloroplasts, but no lysosomes.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” topic=”2.10.Cellular_Compartmentalization” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|2293dbd98258ad” question_number=”38″] An evolutionary biologist argues that having mitochondria is the key feature that has allowed eukaryotic cells to become vastly larger and more complex than prokaryotic cells. Explain.
[a] Because eukaryotic cells contain multiple ATP-producing mitochondria, eukaryotic cells can produce more ATP/cell than prokaryotic cells can. Over evolutionary time, this ATP has provided the energy that has allowed eukaryotic cells to grow to be vastly larger and more complex than their prokaryotic cousins.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” topic=”2.10.Cellular_Compartmentalization” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|2293af9ca06cad” question_number=”39″] What are the benefits to eukaryotic cells of having an endomembrane system?
[a]
- The internal membranes of structures such as the ER and Golgi provide surface area for membrane-bound enzymes and, in the case of the rough E.R., ribosomes.
- Membrane-enclosed compartments allow the cell to have regions with internal chemistry that’s distinct from that of the cytoplasm as a whole. For example, hydrolytic enzymes can safely work within a lysosome, without exposing the rest of the cytoplasm to these enzymes. Similar regions of unique chemistry can be found in the ER, the Golgi, or vacuoles.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” topic=”2.10.Cellular_Compartmentalization” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|22937a0f8ef0ad” question_number=”40″] Compare compartmentalization in prokaryotic and eukaryotic cells.
[a] In general, prokaryotic cells have few compartments, though some prokaryotes do have internal regions with specialized structures and functions (such as the thylakoids of cyanobacteria, which are similar to those in chloroplasts). Eukaryotic cells are highly compartmentalized, with many internal membranes that divide the cell into regions with distinct structures, chemistry, and functions. Examples include lysosomes, the E.R., the Golgi complex, and vacuoles.
[!]2.11.Origins of Cell Compartmentalization[/!]
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” topic=”2.11.Origins_of_Cellular_Compartmentalization” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|2293492a953cad” question_number=”41″] Cellular compartmentalization marks a major evolutionary advance. Specify when and how that advance occurred.
[a] Cellular compartmentalization is the innovation that separates eukaryotic from prokaryotic cells. It dates back to the origin of eukaryotic cells, about 2 billion years ago. Compartmentalization initially arose through endosymbiosis: the incorporation of a free-living bacterial ancestor of mitochondria into an archaeal cell. After that, a similar incorporation of the free-living ancestor of chloroplasts gave rise to green algae and plants.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” topic=”2.11.Origins_of_Cellular_Compartmentalization” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|229305a53c68ad” question_number=”42″] What is the endosymbiotic hypothesis? How did the endosymbiosis referred to in this hypothesis occur?
[a] Endosymbiosis means “living together, on the inside.” In terms of mitochondria and chloroplasts, it refers to the idea that these organelles were once free-living bacterial cells that took up residence inside other cells. The process began with the free-living ancestor of mitochondria being taken up by an archaeal cell. This event gave rise to all of the eukaryotes. Later a mitochondria-containing eukaryotic cell took up chloroplasts, producing the line of organisms that includes plants and green algae.
[q json=”true” yy=”4″ unit=”2.Cell_Structure_and_Function” question_number=”43″ topic=”2.11.Origins_of_Cellular_Compartmentalization” dataset_id=”Unit 2 (cells and Membranes) cumulative flashcards|229246b96d60ad”] List three lines of evidence supporting the idea that chloroplasts and mitochondria were once free living bacterial cells that arose through endosymbiosis
[a]
- Both mitochondria and chloroplasts have their own DNA. This DNA is organized into a circular chromosome that is similar to a bacterial chromosome.
- Both organelles use their own ribosomes to produce some of their own proteins. These ribosomes resemble bacterial ribosomes in terms of their rRNA sequence and structure.
- Both chloroplasts and mitochondria have double membranes. The outer membrane is thought to be a vestige of the host cell membrane that engulfed the ancestral mitochondrion and chloroplast when the endosymbiotic relationship first arose nearly two billion years ago.
[/qdeck]
3. Unit 2 Cumulative Multiple Choice Quiz 1
[qwiz style=”width: 550px !important; min-height: 400px !important;” qrecord_id=”sciencemusicvideosMeister1961-Unit 2 Multiple Choice” dataset=”Unit 2 Cumulative Multiple Choice (v2.0)” random=”false” dataset_intro=”true” ]
[h] Unit 3 Multiple Choice Review Quiz 1
[i]
[q json=”true” multiple_choice=”true” unit=”2.Cell Structure and Function” topic=”2.1-2.2.Cell Parts” dataset_id=”Unit 2 Cumulative Multiple Choice (v2.0)|10fed0a436efe8″ question_number=”1″] The diagram below illustrates a process related to glucose homeostasis in liver cells.
The structure that the GLUT-4 vesicle buds off from is most likely
[c]IHRoZSBzbW9vdGggZW5kb3BsYXNtaWMgcmV0aWN1bHVtLg==[Qq]
[f]IE5vLiBJbiB0aGUgZGlhZ3JhbSBiZWxvdywgdGhlIHNtb290aCBFUiBpcyByZXByZXNlbnRlZCBieSAmIzgyMjA7My4mIzgyMjE7
Cg==SGVyZSYjODIxNztzIGEgaGludC4gQSB0eXBpY2FsIHBhdGh3YXkgZm9yIHRoZSBjcmVhdGlvbiBvZiBhIG1lbWJyYW5lLWVtYmVkZGVkIHByb3RlaW4gbGlrZSBHTFVULTQgaXMgc2hvd24gYmVsb3cuIFRoZSB2ZXNpY2xlIHRoYXQgYnJpbmdzIGEgcHJvdGVpbiBsaWtlIEdMVVQtNCB0byB0aGUgbWVtYnJhbmUgd291bGQgYmUgcmVwcmVzZW50ZWQgYnkgJiM4MjIwOzYuJiM4MjIxOyBXaGF0JiM4MjE3O3MgdGhlIG5hbWUgb2YgdGhlIHN0cnVjdHVyZSBhdCA1Pw==
Cg==[Qq]
[c]IHRoZSBHb2xnaS Bjb21wbGV4Lg==[Qq]
[f]IFllcy4gQSB0eXBpY2FsIHBhdGh3YXkgZm9yIHRoZSBjcmVhdGlvbiBvZiBhIG1lbWJyYW5lLWVtYmVkZGVkIHByb3RlaW4gbGlrZSBHTFVULTQgaXMgc2hvd24gYmVsb3cuIFRoZSB2ZXNpY2xlIHRoYXQgYnJpbmdzIGEgcHJvdGVpbiBsaWtlIEdMVVQtNCB0byB0aGUgbWVtYnJhbmUgd291bGQgYmUgcmVwcmVzZW50ZWQgYnkgJiM4MjIwOzYuJiM4MjIxOyBUaGlzIHZlc2ljbGUgd291bGQgYnVkIG9mZiBmcm9tIHRoZSBHb2xnaSwgd2hpY2ggaXMgc2hvd24gYXQgJiM4MjIwOzUuJiM4MjIxOw==
Cg==[Qq]
[c]IHRoZSByb3VnaCBlbmRvcGxhc21pYyByZXRpY3VsdW0u[Qq]
[f]IE5vLiBJbiB0aGUgZGlhZ3JhbSBiZWxvdywgdGhlIHJvdWdoIEVSIGlzIHJlcHJlc2VudGVkIGJ5ICYjODIyMDsyLiYjODIyMTsgSXQmIzgyMTc7cyB3aGVyZSBHTFVULTQgd291bGQgYmUgc3ludGhlc2l6ZWQsIGJ1dCBmb3IgaXQgdG8gZ2V0IHRvIGEgbWVtYnJhbmUtYm91bmQgdmVzaWNsZSwgdGhlIEdMVVQtNCB3b3VsZCBoYXZlIHRvIG1ha2UgaXQgdG8gdGhlIEdvbGdpIEFwcGFyYXR1cy4gV2hpY2ggbnVtYmVyIGluIHRoZSBkaWFncmFtIGJlbG93IHJlcHJlc2VudHMgdGhlIEdvbGdpPw==
Cg==[Qq]
[c]IGEgbHlzb3NvbWUu[Qq]
[f]IE5vLiBJbiB0aGUgZGlhZ3JhbSBiZWxvdywgYSBseXNvc29tZSBpcyByZXByZXNlbnRlZCBieSAmIzgyMjA7Ny4mIzgyMjE7
Cg==SGVyZSYjODIxNztzIGEgaGludC4gQSB0eXBpY2FsIHBhdGh3YXkgZm9yIHRoZSBjcmVhdGlvbiBvZiBhIG1lbWJyYW5lLWVtYmVkZGVkIHByb3RlaW4gbGlrZSBHTFVULTQgaXMgc2hvd24gYmVsb3cuIFRoZSB2ZXNpY2xlIHRoYXQgYnJpbmdzIGEgcHJvdGVpbiBsaWtlIEdMVVQtNCB0byB0aGUgbWVtYnJhbmUgd291bGQgYmUgcmVwcmVzZW50ZWQgYnkgJiM4MjIwOzYuJiM4MjIxOyBXaGF0JiM4MjE3O3MgdGhlIG5hbWUgb2YgdGhlIHN0cnVjdHVyZSBhdCA1Pw==
Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” unit=”2.Cell Structure and Function” dataset_id=”Unit 2 Cumulative Multiple Choice (v2.0)|10febe03d7cfe8″ question_number=”2″ topic=”2.1-2.2.Cell Parts”] Which letter in the diagram below represents the rough endoplasmic reticulum?
[c]IE Eg[Qq][c]IEIg[Qq][c]IEMg[Qq][c]IEQg[Qq][c]IEU=
Cg==[Qq][f]IE5pY2Ugam9iLiBBIHJlcHJlc2VudHMgdGhlIHJvdWdoIEUuUi4=[Qq]
[f]IE5vLiBCIGlzIGEgcHJvdGVpbiAob3Igb3RoZXIgc3Vic3RhbmNlKSB0aGF0JiM4MjE3O3MgYmVpbmcgZXhwb3J0ZWQgZnJvbSB0aGUgY2VsbCB0aHJvdWdoIGV4b2N5dG9zaXMu[Qq]
[f]IE5vLiBDIGlzIGEgdmVzaWNsZSwgbW92aW5nIHN1YnN0YW5jZXMgZnJvbSB0aGUgR29sZ2kgQXBwYXJhdHVzIHRvIChpbiB0aGlzIGNhc2UpIHRoZSBtZW1icmFuZS4=[Qq]
[f]IE5vLiBEIGlzIHRoZSBHb2xnaSBBcHBhcmF0dXMu[Qq]
[f]IE5vLiBFIHJlcHJlc2VudHMgdGhlIGNlbGwmIzgyMTc7cyByaWJvc29tZXMu
Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” unit=”2.Cell Structure and Function” dataset_id=”Unit 2 Cumulative Multiple Choice (v2.0)|10fea90f6ccbe8″ question_number=”3″ topic=”2.1-2.2.Cell Parts”] KDEL is a short polypeptide sequence consisting of four amino acids (lysine, aspartic acid, glutamic acid, and leucine). As certain proteins are being synthesized and/or modified, KDEL binds with a specific receptor. This receptor, in turn, prevents the protein from being secreted in a vesicle for further modification.
Based on this description, the KDEL receptor is most likely found in the
[c]IFBsYXNtYSBtZW1icmFuZQ==[Qq]
[f]IE5vLiBUYWtlIGEgbG9vayBhdCB0aGUgZGlhZ3JhbSBiZWxvdy4gVGhlIG9ubHkgd2F5IHRoYXQgYSBwcm90ZWluIGlzIGdvaW5nIHRvIGdldCB0byB0aGUgbWVtYnJhbmUgd291bGQgYmUgdGhyb3VnaCBhIHZlc2ljbGUgKHN1Y2ggYXMgdGhlIG9uZXMgYXQgNiBvciA0IGJlbG93KS4gVXNpbmcgdGhlIGRpYWdyYW0sIHNlZSBpZiB5b3UgY2FuIGZpbmQgYSBsb2NhdGlvbiB3aGVyZSBwcm90ZWlucyBhcmUgc3ludGhlc2l6ZWQgb3IgbW9kaWZpZWQgYmVmb3JlIHRoZXkgd291bGQgYmUgaW5jb3Jwb3JhdGVkIGludG8gYSB2ZXNpY2xlLiBUaGF0JiM4MjE3O3Mgd2hlcmUgeW91IG1pZ2h0IGZpbmQgdGhlIEtERUwgcmVjZXB0b3Iu
Cg==[Qq]
[c]IEN5dG9zb2w=[Qq]
[f]IE5vLiBBIHByb3RlaW4gdGhhdCYjODIxNztzIGJlaW5nIHN5bnRoZXNpemVkIG9yIG1vZGlmaWVkIGluIHRoZSBjeXRvc29sIHdvdWxkIHN0YXkgaW4gdGhlIGN5dG9zb2wgYWZ0ZXIgYmVpbmcgc3ludGhlc2l6ZWQsIHNvIGl0IHdvdWxkbiYjODIxNzt0IG5lZWQgYSByZWNlcHRvciB0aGF0IHdvdWxkIGtlZXAgaXQgZnJvbSBiZWluZyBlbmNsb3NlZCBpbiBhIHZlc2ljbGUuIFRoYXQgd291bGQgb25seSBiZSB0cnVlIG9mIGEgcHJvdGVpbiB0aGF0JiM4MjE3O3MgYmVpbmcgc3ludGhlc2l6ZWQgb3IgbW9kaWZpZWQgd2l0aGluIHRoZSBjZWxsJiM4MjE3O3MgZW5kb21lbWJyYW5lIHN5c3RlbSAoc2hvd24gYmVsb3cpLiBTZWUgaWYgeW91IGNhbiBmaW5kLCBpbiB0aGUgZGlhZ3JhbSBiZWxvdywgYSBsb2NhdGlvbiB3aGVyZSBhIHByb3RlaW4gbWlnaHQgYmUgc3ludGhlc2l6ZWQgaW4gYSB3YXkgdGhhdCBhIGNlcnRhaW4gc2lnbmFsIHNlcXVlbmNlIChsaWtlIEtERUwpIHdvdWxkIGJpbmQgd2l0aCBhIHJlY2VwdG9yIGluIGEgd2F5IHRoYXQgd291bGQga2VlcCBpdCBmcm9tIGJlaW5nIGVuY2xvc2VkIHdpdGhpbiBhIHZlc2ljbGUgKHN1Y2ggYXMgdGhlIG9uZXMgc2hvd24gYXQgNCBvciA2KQ==
Cg==[Qq]
[c]IEVuZG9wbGFzbWlj IHJldGljdWx1bQ==[Qq]
[f]IEV4Y2VsbGVudCEgQmFzZWQgb24gdGhlIGRlc2NyaXB0aW9uIGFib3ZlLCBpdCBzb3VuZHMgbGlrZSB0aGlzIGlzIGEgcHJvdGVpbiB0aGF0JiM4MjE3O3MgZ29pbmcgdG8gYmUgZG9ja2VkIGF0IGEgcmVjZXB0b3IgaW4gdGhlIEVSLg==[Qq]
[c]IE1pdG9jaG9uZHJpYQ==[Qq]
[f]IE5vLiBUaGlzIGRvZXNuJiM4MjE3O3Qgc291bmQgbGlrZSBhIHByb2Nlc3MgdGhhdCB3b3VsZCBpbnZvbHZlIHRoZSBtaXRvY2hvbmRyaWEuIFVzaW5nIHRoZSBkaWFncmFtIGJlbG93LCBzZWUgaWYgeW91IGNhbiBmaW5kIGEgbG9jYXRpb24gd2hlcmUgcHJvdGVpbnMgYXJlIHN5bnRoZXNpemVkIG9yIG1vZGlmaWVkIA==YmVmb3JlIHRoZXkgd291bGQgYmUgaW5jb3Jwb3JhdGVkIGludG8gYSB2ZXNpY2xlIChzdWNoIGFzIHRoZSB2ZXNpY2xlcyBzaG93biBhdCA0IG9yIDYgYmVsb3cpLiBUaGF0JiM4MjE3O3Mgd2hlcmUgeW91IG1pZ2h0IGZpbmQgdGhlIEtERUwgcmVjZXB0b3Iu
Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 2 Cumulative Multiple Choice (v2.0)|10fe941b01c7e8″ question_number=”4″ unit=”2.Cell Structure and Function” topic=”2.1-2.2.Cell Parts”] In a marine food chain that ends with a humpback whale, phytoplankton are the first link. Which of the following statements apply to both the mitochondria of humpback whales and the chloroplasts of phytoplankton?
I. Contains its own DNA
II. Makes ATP by chemiosmosis
III. Temporarily stores energy in reduced electron acceptors
[c]IEkgb25seQ==[Qq]
[f]IE5vLCBidXQgeW91JiM4MjE3O3JlIG9uIHRoZSByaWdodCB0cmFjay4gQm90aCBjaGxvcm9wbGFzdHMgYW5kIG1pdG9jaG9uZHJpYSBoYXZlIHRoZWlyIG93biBETkEuIEJ1dCB0aGV5IGFsc28gaGF2ZSBvdGhlciBzaW1pbGFyaXRpZXMu[Qq]
[c]IElJIG9ubHk=[Qq]
[f]IE5vLiBCdXQgeW91JiM4MjE3O3JlIG9uIHRoZSByaWdodCB0cmFjay4gQm90aCBjaGxvcm9wbGFzdHMgYW5kIG1pdG9jaG9uZHJpYSBtYWtlIEFUUCBieSBjaGVtaW9zbW9zaXMuIEJ1dCB0aGV5IGFsc28gaGF2ZSBvdGhlciBzaW1pbGFyaXRpZXMu[Qq]
[c]IElJSSBvbmx5[Qq]
[f]IE5vLiBCdXQgeW91JiM4MjE3O3JlIG9uIHRoZSByaWdodCB0cmFjay4gQm90aCBjaGxvcm9wbGFzdHMgYW5kIG1pdG9jaG9uZHJpYSB0ZW1wb3JhcmlseSBzdG9yZSBlbmVyZ3kgaW4gcmVkdWNlZCBlbGVjdHJvbiBjYXJyaWVycyAoTkFEUEggYW5kIE5BREgsIHJlc3BlY3RpdmVseSkuIEJ1dCB0aGV5IGFsc28gaGF2ZSBvdGhlciBzaW1pbGFyaXRpZXMu[Qq]
[c]IEkgYW5kIElJIG9ubHk=[Qq]
[f]IE5vLCBidXQgeW91JiM4MjE3O3JlIG9uIHRoZSByaWdodCB0cmFjay4gQm90aCBjaGxvcm9wbGFzdHMgYW5kIG1pdG9jaG9uZHJpYSBoYXZlIHRoZWlyIG93biBETkEgYW5kIG1ha2UgQVRQIGJ5IGNoZW1pb3Ntb3Npcy4gQnV0IHRoZXkgYWxzbyBoYXZlIG9uZSBvdGhlciBzaW1pbGFyaXR5Lg==[Qq]
[c]IEksIElJLC BhbmQgSUlJ[Qq]
[f]IEV4Y2VsbGVudC4gQm90aCBjaGxvcm9wbGFzdHMgYW5kIG1pdG9jaG9uZHJpYSBoYXZlIHRoZWlyIG93biBETkEsIG1ha2UgQVRQIGJ5IGNoZW1pb3Ntb3NpcywgYW5kIHN0b3JlIGVuZXJneSBpbiByZWR1Y2VkIGVsZWN0cm9uIGNhcnJpZXJzIChOQURQSCBhbmQgTkFESCwgcmVzcGVjdGl2ZWx5KS4=
Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 2 Cumulative Multiple Choice (v2.0)|10fe75d66733e8″ question_number=”5″ unit=”2.Cell Structure and Function” topic=”2.1-2.2.Cell Parts”] Which of the following components are found in all prokaryotic cells?
- Ribosomes
- Plasma membrane
- Genetic information
[c]IEkgb25seQ==[Qq]
[f]IE5vLiBZb3UmIzgyMTc7cmUgcmlnaHQgYWJvdXQgdGhlaXIgaGF2aW5nIHJpYm9zb21lcywgYnV0IHRoZXJlIGFyZSBvdGhlciBjb21wb25lbnRzIHRoYXQgYWxsIHByb2thcnlvdGljIGNlbGxzIHBvc3Nlc3Mu[Qq]
[c]IElJIG9ubHk=[Qq]
[f]IE5vLiBZb3UmIzgyMTc7cmUgcmlnaHQgYWJvdXQgdGhlaXIgaGF2aW5nIGEgbWVtYnJhbmUsIGJ1dCB0aGVyZSBhcmUgb3RoZXIgY29tcG9uZW50cyB0aGF0IGFsbCBwcm9rYXJ5b3RpYyBjZWxscyBwb3NzZXNzLg==[Qq]
[c]IElJSSBvbmx5[Qq]
[f]IE5vLiBZb3UmIzgyMTc7cmUgcmlnaHQgYWJvdXQgdGhlaXIgaGF2aW5nIGdlbmV0aWMgaW5mb3JtYXRpb24sIGJ1dCB0aGVyZSBhcmUgb3RoZXIgY29tcG9uZW50cyB0aGF0IGFsbCBwcm9rYXJ5b3RpYyBjZWxscyBwb3NzZXNzLg==[Qq]
[c]IEkgYW5kIElJIG9ubHk=[Qq]
[f]IE5vLiBZb3UmIzgyMTc7cmUgcmlnaHQgYWJvdXQgdGhlaXIgaGF2aW5nIHJpYm9zb21lcyBhbmQgYSBtZW1icmFuZSwgYnV0IHRoZXJlJiM4MjE3O3Mgb25lIG1vcmUgY29tcG9uZW50IHRoYXQgYWxsIHByb2thcnlvdGljIGNlbGxzIHBvc3Nlc3Mu[Qq]
[c]IEksIElJLC BhbmQgSUlJ[Qq]
[f]IEV4Y2VsbGVudDogYWxsIHByb2thcnlvdGljIGNlbGxzIGhhdmUgcmlib3NvbWVzLCBhIG1lbWJyYW5lLCBhbmQgZ2VuZXRpYyBpbmZvcm1hdGlvbi4=
Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 2 Cumulative Multiple Choice (v2.0)|10fe5e8df04be8″ question_number=”6″ unit=”2.Cell Structure and Function” topic=”2.1-2.2.Cell Parts”] Which of the following features applies to both chloroplasts and mitochondria?
Chloroplast | Mitochondrion |
I. Synthesizes its own protein.
II. Contains a small amount of DNA
III. Not part of the endomembrane system
IV. Can grow and reproduce semi-autonomously
[c]IEksIElJLCBhbmQgSVYgb25seQ==[Qq]
[f]IE5vLCBidXQgeW91JiM4MjE3O3JlIHZlcnkgY2xvc2UuIEhlcmUmIzgyMTc7cyBhIGhpbnQ6IHN0dWR5IHRoaXMgZGlhZ3JhbS4gV2hhdCYjODIxNztzIG5vdCB0aGVyZT8=
Cg==[Qq]
[c]IElJIG9ubHk=[Qq]
[f]IE5vLiBZb3UmIzgyMTc7cmUgcmlnaHQgaW4gdGhhdCBib3RoIGNobG9yb3BsYXN0cyBhbmQgbWl0b2Nob25kcmlhIGhhdmUgdGhlaXIgb3duIHNtYWxsIGFtb3VudCBvZiBETkEgaW4gdGhlIGZvcm0gb2YgYSBzaW5nbGUsIGNpcmN1bGFyIGNocm9tb3NvbWUuIEJ1dCB0aGV5IHNoYXJlIG90aGVyIGZlYXR1cmVzIGFzIHdlbGwu[Qq]
[c]IElJIGFuZCBJSUkgb25seQ==[Qq]
[f]IE5vLiBZb3UmIzgyMTc7cmUgcmlnaHQgaW4gdGhhdCBib3RoIGNobG9yb3BsYXN0cyBhbmQgbWl0b2Nob25kcmlhIGhhdmUgdGhlaXIgb3duIHNtYWxsIGFtb3VudCBvZiBETkEgKGluIHRoZSBmb3JtIG9mIGEgc2luZ2xlLCBjaXJjdWxhciBjaHJvbW9zb21lKTsgYW5kIHRoYXQgdGhleSYjODIxNztyZSBub3QgcGFydCBvZiB0aGUgZW5kb21lbWJyYW5lIHN5c3RlbS4gQnV0IHRoZXkgc2hhcmUgb3RoZXIgZmVhdHVyZXMgYXMgd2VsbC4=[Qq]
[c]IElJSSBhbmQgSVYgb25seQ==[Qq]
[f]IE5vLiBZb3UmIzgyMTc7cmUgcmlnaHQgaW4gdGhhdCBib3RoIGNobG9yb3BsYXN0cyBhbmQgbWl0b2Nob25kcmlhIGFyZSBub3QgcGFydCBvZiB0aGUgZW5kb21lbWJyYW5lIHN5c3RlbSwgYW5kIHRoYXQgdGhleSBjYW4gZ3JvdyBhbmQgcmVwcm9kdWNlIHNlbWktYXV0b25vbW91c2x5LiBCdXQgdGhleSBzaGFyZSBvdGhlciBmZWF0dXJlcyBhcyB3ZWxsLg==[Qq]
[c]IEksIElJLCBJSU ksIGFuZCBJVg==[Qq]
[f]IEV4Y2VsbGVudDogeW91JiM4MjE3O3ZlIGlkZW50aWZpZWQgZm91ciBmZWF0dXJlcyB0aGF0IGNobG9yb3BsYXN0cyBhbmQgbWl0b2Nob25kcmlhIHNoYXJlLg==
Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 2 Cumulative Multiple Choice (v2.0)|10fe47457963e8″ question_number=”7″ unit=”2.Cell Structure and Function” topic=”2.1-2.2.Cell Parts”] Which of the following features can be used to distinguish between a prokaryotic and eukaryotic cell?
[c]IEROQSBpcyBwcmVzZW50IGluIHRoZSBjZWxsLg==[Qq]
[f]IE5vLiBCb3RoIHByb2thcnlvdGljIGNlbGxzIGFuZCBldWthcnlvdGljIGNlbGxzIGhhdmUgRE5BLg==[Qq]
[c]IFRoZXJlIGlzIGEgcmlnaWQgY2VsbCB3YWxsLg==[Qq]
[f]IE5vLiBCZWNhdXNlIHRoZXJlIGFyZSBhIGZldyBwcm9rYXJ5b3RpYyBjZWxscyAoZ2VudXMgbXljb3BsYXNtYSkgdGhhdCBsYWNrIGEgY2VsbCB3YWxsLCBhbmQgYmVjYXVzZSBhbGwgYW5pbWFsIGNlbGxzIGxhY2sgY2VsbCB3YWxscywgeW91IGNhbiYjODIxNzt0IHVzZSB0aGUgcHJlc2VuY2Ugb2YgYSBjZWxsIHdhbGwgYXMgYSBkaXN0aW5ndWlzaGluZyBmZWF0dXJlLg==[Qq]
[c]IFJpYm9zb21lcyBhcmUgcHJlc2VudCBpbiB0aGUgY2VsbC4=[Qq]
[f]IE5vLiBCb3RoIHByb2thcnlvdGljIGFuZCBldWthcnlvdGljIGNlbGxzIGhhdmUgcmlib3NvbWVzLg==[Qq]
[c]IFRoZSBjZWxsIGNhcnJpZXMgb3V0IGNlbGx1bGFyIG1ldGFib2xpc20u[Qq]
[f]IE5vLiBCb3RoIHByb2thcnlvdGljIGFuZCBldWthcnlvdGljIGNlbGxzIGNhcnJ5IG91dCBjZWxsdWxhciBtZXRhYm9saXNtLg==[Qq]
[c]IFRoZSBjZWxsIGlzIGRpdmlkZWQgYn kgaW50ZXJuYWwgbWVtYnJhbmVzLg==[Qq]
[f]IFRlcnJpZmljLiBXaGlsZSBldWthcnlvdGljIGNlbGxzIGFyZSBkaXZpZGVkIGJ5IGludGVybmFsIG1lbWJyYW5lcywgcHJva2FyeW90aWMgY2VsbHMgYXJlIG5vdC4=
Cg==Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 2 Cumulative Multiple Choice (v2.0)|10fe2ffd027be8″ question_number=”8″ unit=”2.Cell Structure and Function” topic=”2.3.Cell_Size”] The body temperature of small ectothermic animals, such as small fish, is dependent on the temperature of their environment. Large ectothermic animals, like sea turtles, can retain their body heat to remain warmer than their environment. Scientists believe large aquatic dinosaurs were also able to retain their body heat. Which of the following reasons best explains why large ectothermic animals can retain heat?
[c]IExhcmdlciBzdXJmYWNlL3ZvbHVtZSByYXRpbw==[Qq]
[f]IE5vLiBUaGluayBvZiB0aGUgZm9ybXVsYXMgZm9yIHRoZSBzdXJmYWNlIGFyZWEgYW5kIHRoZSB2b2x1bWUgb2YgYSBjdWJlLiBTdXJmYWNlIGFyZWEgaXMgKHNpZGUgKiA2KQ==Mg==LiBWb2x1bWUgaXMgKHNpZGUpMw==LiBCZWNhdXNlIHN1cmZhY2UgYXJlYSBpcyBhIHNxdWFyZSBmdW5jdGlvbiBhbmQgdm9sdW1lIGlzIGEgY3ViaWMgZnVuY3Rpb24sIHRoZW4gdGhlIGxhcmdlciBhIGN1YmUgaXMsIHRoZSA=[Qq]less surface area it has relative to its volume, as you can see in the graph below.
What’s true of cubes is true of animals (only the calculations for finding area and volume are more complicated. Use that as a hint to think about what’s going on with larger organisms, and how that might relate to these organisms’ ability (or inability) to diffuse heat out of their bodies.
[c]IFNtYWxsZXIgc3VyZmFj ZS92b2x1bWUgcmF0aW8=[Qq]
[f]IFllcy4gQmVjYXVzZSBzdXJmYWNlIGFyZWEgaXMgYSBzcXVhcmUgZnVuY3Rpb24gYW5kIHZvbHVtZSBpcyBhIGN1YmljIGZ1bmN0aW9uLCB0aGVuIHRoZSBsYXJnZXIgYW4gb3JnYW5pc20gaXMgdGhlIGxlc3Mgc3VyZmFjZSBhcmVhIGl0IGhhcyByZWxhdGl2ZSB0byBpdHMgdm9sdW1lLiBUaGF0IG1lYW5zIHRoYXQgaXQmIzgyMTc7cyBtdWNoIGhhcmRlciBmb3IgbGFyZ2VyIGFuaW1hbHMgdG8gZGlmZnVzZSBoZWF0IG91dCBvZiB0aGVpciBib2RpZXMsIHdoaWNoIGV4cGxhaW5zIHdoeSBsYXJnZSBlY3RvdGhlcm1pYyBhbmltYWxzIGNhbiByZXRhaW4gaGVhdC4=[Qq]
[c]IEhpZ2hlciBtZXRhYm9saWMgcmF0ZSBwZXIgZ3JhbSBvZiBib2R5IG1hc3Mu[Qq]
[f]IE5vLiBUaGUgcmVsYXRpb25zaGlwIGFjdHVhbGx5IHJ1bnMgaW4gdGhlIG9wcG9zaXRlIGRpcmVjdGlvbiwgYXMgeW91IGNhbiBzZWUgaW4gdGhlIGdyYXBoIGJlbG93Lg==
Cg==Cg==[Qq]The key to this question has more to do with surface area-to-volume relationships. Study the graph below, which shows the relationship between surface area and volume for a cube. What happens to an organism’s surface area to volume ratio as it increases in size, and how might that relate to an organism’s ability to diffuse heat out of its body?
[c]IExvd2VyIG1ldGFib2xpYyByYXRlIHBlciBncmFtIG9mIGJvZHkgbWFzcy4=[Qq]
[f]IE5vLiBXaGlsZSB5b3UgY2xlYXJseSB1bmRlcnN0YW5kIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiBib2R5IG1hc3MgYW5kIG1ldGFib2xpc20sIGl0JiM4MjE3O3MgaGFyZCB0byBzZWUgd2h5IGhhdmluZyBhIGxvd2VyIG1ldGFib2xpc20gd291bGQgbGVhZCBhIGxhcmdlIGVjdG90aGVybSB0byBoYXZlIGEgYmV0dGVyIGFiaWxpdHkgdG8gcmV0YWluIGl0cyBib2R5IGhlYXQuIEluIGZhY3QsIHlvdSBtaWdodCBleHBlY3QgaXQgdG8gYmUgdGhlIG9wcG9zaXRlOiBzaW5jZSB0aGUgbGFyZ2Ugb3JnYW5pc21zIGdlbmVyYXRlIGxlc3MgaGVhdC9ncmFtIG9mIGJvZHkgbWFzcywgdGhleSYjODIxNztkIGJlIGNvb2xlciwgbm90IHdhcm1lciwgdGhhbiBzbWFsbGVyIG9yZ2FuaXNtcy4gQnV0IHRoYXQmIzgyMTc7cyBub3QgdGhlIGNhc2Uu
Cg==Cg==[Qq]The key to this question has more to do with surface area-to-volume relationships. Study the graph below, which shows the relationship between surface area and volume for a cube. What happens to an organism’s surface area to volume ratio as it increases in size, and how might that relate to an organism’s ability to diffuse heat out of its body?
[q json=”true” xyz=”2″ multiple_choice=”true” unit=”2.Cell Structure and Function” topic=”2.3.Cell_Size” dataset_id=”Unit 2 Cumulative Multiple Choice (v2.0)|10fe1b089777e8″ question_number=”9″] The diagram below shows the relationship between the surface area:volume ratio and the volume for two rod-shaped bacteria with the same ratio of length to width (aspect ratio). Which of the following is true of the relationship shown?
[c]IEZvciBsYXJnZSBjZWxscywgYW4gaW5jcmVhc2UgaW4gdm9sdW1lIGhhcyBsZXNz IGltcGFjdCBvbiB0aGUgU0EvViByYXRpbyB0aGFuIGZvciBzbWFsbCBjZWxscy4=[Qq]
[f]IE5pY2UuIFRoZSBncmFwaCBzaG93cyB0aGF0IGFzIHRoZSBjZWxsIGdldHMgbGFyZ2VyIChpbiB0ZXJtcyBvZiB2b2x1bWUpLCB0aGUgY2hhbmdlIGluIHN1cmZhY2UgYXJlYSB0byB2b2x1bWUgcmF0aW8gY2hhbmdlcyBtb3JlIHNsb3dseSAodGhlIHNsb3BlIGdldHMgc2hhbGxvd2VyKS4=[Qq]
[c]IEZvciBzbWFsbCBjZWxscywgYW4gaW5jcmVhc2UgaW4gdm9sdW1lIGhhcyBsZXNzIGltcGFjdCBvbiB0aGUgU0EvViByYXRpbyB0aGFuIGZvciBsYXJnZSBjZWxscy4=[Qq]
[f]IE5vLiBMb29rIGNhcmVmdWxseSBhdCB0aGUgZ3JhcGguIEFzIHRoZSBjZWxsIGdldHMgbGFyZ2VyIChpbiB0ZXJtcyBvZiB2b2x1bWUpLCB0aGUgY2hhbmdlIGluIHN1cmZhY2UgYXJlYSB0byB2b2x1bWUgcmF0aW8gY2hhbmdlcyBtb3JlIHNsb3dseSAodGhlIHNsb3BlIGdldHMgc2hhbGxvd2VyKS4=[Qq]
[c]IEluY3JlYXNlcyBpbiB2b2x1bWUgYWZmZWN0IHRoZSBTQS9WIHJhdGlvIHRoZSBzYW1lIGZvciBzbWFsbCBhbmQgbGFyZ2UgY2VsbHM=[Qq]
[f]IE5vLiBMb29rIGNhcmVmdWxseSBhdCB0aGUgZ3JhcGguIEFzIHRoZSBjZWxsIGdldHMgbGFyZ2VyIChpbiB0ZXJtcyBvZiB2b2x1bWUpLCB0aGUgY2hhbmdlIGluIHN1cmZhY2UgYXJlYSB0byB2b2x1bWUgcmF0aW8gY2hhbmdlcyBtb3JlIHNsb3dseSAodGhlIHNsb3BlIGdldHMgc2hhbGxvd2VyKS4=[Qq]
[c]IEFzIGxvbmcgYXMgdGhlIGFzcGVjdCByYXRpbyBpcyBjb25zdGFudCwgdGhlIFNBL1YgcmF0aW8gd2lsbCBhbHNvIGJlIGNvbnN0YW50Lg==[Qq]
[f]IE5vLiBMb29rIGNhcmVmdWxseSBhdCB0aGUgZ3JhcGguIEFzIHRoZSBjZWxsIGdldHMgbGFyZ2VyIChpbiB0ZXJtcyBvZiB2b2x1bWUpLCB0aGUgY2hhbmdlIGluIHN1cmZhY2UgYXJlYSB0byB2b2x1bWUgcmF0aW8gY2hhbmdlcyBtb3JlIHNsb3dseSAodGhlIHNsb3BlIGdldHMgc2hhbGxvd2VyKS4gSWYgdGhlIHJhdGlvIHdlcmUgY29uc3RhbnQsIHRoZW4gdGhlIHJlbGF0aW9uc2hpcCB3b3VsZCBiZSBkZXBpY3RlZCBieSBhIGhvcml6b250YWwgbGluZS4=
Cg==[Qq]
[q json=”true” multiple_choice=”true” unit=”2.Cell Structure and Function” topic=”2.4.Plasma_Membranes” dataset_id=”Unit 2 Cumulative Multiple Choice (v2.0)|10fe06142c73e8″ question_number=”10″] In the diagram below, which membrane component is responsible for maintaining an optimum level of membrane fluidity?
[c]IEEg[Qq][c]IE Ig[Qq][c]IEMg[Qq][c]IEQg[Qq][c]IEU=
Cg==[Qq][f]IE5vLiAmIzgyMjA7QSYjODIyMTsgaXMgcG9pbnRpbmcgdG8gc2hvcnQgcG9seXNhY2NoYXJpZGVzIChvbGlnb3NhY2NoYXJpZGVzKSB0aGF0IGFyZSBhdHRhY2hlZCB0byBsaXBpZHMgb3IgcHJvdGVpbnMuIE9saWdvc2FjY2hhcmlkZXMgYXJlIGludm9sdmVkIGluIGNlbGwgcmVjb2duaXRpb24uIEhlcmUmIzgyMTc7cyBhIGhpbnQ6IHlvdSYjODIxNztyZSBsb29raW5nIGZvciBhIG1vbGVjdWxlIHRoYXQmIzgyMTc7cyBhIGxpcGlkLCBidXQgbm90IGEgcGhvc3Bob2xpcGlkLg==[Qq]
[f]IEV4Y2VsbGVudCEgJiM4MjIwO0ImIzgyMjE7IGlzIHBvaW50aW5nIHRvIGNob2xlc3Rlcm9sLCB3aGljaCBhY3RzIHRvIG1haW50YWluIHRoZSBwcm9wZXIgbGV2ZWwgb2YgbWVtYnJhbmUgZmx1aWRpdHku[Qq]
[f]IE5vLiAmIzgyMjA7QyYjODIyMTsgaXMgcG9pbnRpbmcgdG8gYSBjaGFubmVsIHByb3RlaW4sIHdoaWNoIHBsYXlzIGEgcm9sZSBpbiBjZWxsIHRyYW5zcG9ydC4gSGVyZSYjODIxNztzIGEgaGludDogeW91JiM4MjE3O3JlIGxvb2tpbmcgZm9yIGEgbW9sZWN1bGUgdGhhdCYjODIxNztzIGEgbGlwaWQsIGJ1dCA=bm90IGEgcGhvc3Bob2xpcGlkLg==[Qq]
[f]IE5vLiAmIzgyMjA7RCYjODIyMTsgaXMgcG9pbnRpbmcgdG8gYSBwaG9zcGhvbGlwaWQuIFBob3NwaG9saXBpZHMgZm9ybSB0aGUgcGhvc3Bob2xpcGlkIGJpbGF5ZXIsIHRoZSBrZXkgc3RydWN0dXJhbCBjb21wb25lbnQgb2YgdGhlIG1lbWJyYW5lLiBIZXJlJiM4MjE3O3MgYSBoaW50OiB5b3UmIzgyMTc7cmUgbG9va2luZyBmb3IgYSBtb2xlY3VsZSB0aGF0JiM4MjE3O3MgYSBsaXBpZCwgYnV0IA==bm90IGEgcGhvc3Bob2xpcGlkLg==[Qq]
[f]IE5vLiAmIzgyMjA7RSYjODIyMTsgaXMgcG9pbnRpbmcgdG8gYSBtZW1icmFuZSBwcm90ZWluLiBNZW1icmFuZSBwcm90ZWlucyBsaWtlICYjODIyMDtFJiM4MjIxOyBjYW4gYWN0IGFzIG1lbWJyYW5lLWVtYmVkZGVkIGVuenltZXMgb3IgYXR0YWNobWVudCBwb2ludHMgZm9yIHRoZSBjeXRvc2tlbGV0b24uIEhlcmUmIzgyMTc7cyBhIGhpbnQ6IHlvdSYjODIxNztyZSBsb29raW5nIGZvciBhIG1vbGVjdWxlIHRoYXQmIzgyMTc7cyBhIGxpcGlkLCBidXQgbm90IGEgcGhvc3Bob2xpcGlkLg==
Cg==[Qq]
[q json=”true” multiple_choice=”true” unit=”2.Cell Structure and Function” topic=”2.4.Plasma_Membranes” dataset_id=”Unit 2 Cumulative Multiple Choice (v2.0)|10fdeecbb58be8″ question_number=”11″] In the diagram below, which membrane component would be involved in cell recognition?
[c]IE Eg[Qq][c]IEIg[Qq][c]IEMg[Qq][c]IEQg[Qq][c]IEU=
Cg==[Qq][f]IE5pY2UuICYjODIyMDtBJiM4MjIxOyBpcyBwb2ludGluZyB0byBzaG9ydCBwb2x5c2FjY2hhcmlkZXMgKG9saWdvc2FjY2hhcmlkZXMpIHRoYXQgYXJlIGF0dGFjaGVkIHRvIGxpcGlkcyBvciBwcm90ZWlucy4gT2xpZ29zYWNjaGFyaWRlcyBhcmUgaW52b2x2ZWQgaW4gY2VsbCByZWNvZ25pdGlvbi4=[Qq]
[f]IE5vLiAmIzgyMjA7QiYjODIyMTsgaXMgcG9pbnRpbmcgdG8gY2hvbGVzdGVyb2wsIHdoaWNoIGFjdHMgdG8gbWFpbnRhaW4gdGhlIHByb3BlciBsZXZlbCBvZiBtZW1icmFuZSBmbHVpZGl0eS4gSGVyZSYjODIxNztzIGEgaGludDogeW91JiM4MjE3O3JlIGxvb2tpbmcgZm9yIGEgbW9sZWN1bGUgdGhhdCYjODIxNztzIHN0aWNraW5nIG91dCBmcm9tIHRoZSBtZW1icmFuZSYjODIxNztzIG91dGVyIHN1cmZhY2UgaW50byB0aGUgZXh0cmFjZWxsdWxhciBzcGFjZSB3aGVyZSBpdCBjb3VsZCBiZSBldmFsdWF0ZWQgYnkgY2VsbHMgb2YgdGhlIGltbXVuZSBzeXN0ZW0u[Qq]
[f]IE5vLiAmIzgyMjA7QyYjODIyMTsgaXMgcG9pbnRpbmcgdG8gYSBjaGFubmVsIHByb3RlaW4sIHdoaWNoIHBsYXlzIGEgcm9sZSBpbiBjZWxsIHRyYW5zcG9ydC4gSGVyZSYjODIxNztzIGEgaGludDogeW91JiM4MjE3O3JlIGxvb2tpbmcgZm9yIGEgbW9sZWN1bGUgdGhhdCYjODIxNztzIHN0aWNraW5nIG91dCBmcm9tIHRoZSBtZW1icmFuZSYjODIxNztzIG91dGVyIHN1cmZhY2UgaW50byB0aGUgZXh0cmFjZWxsdWxhciBzcGFjZSB3aGVyZSBpdCBjb3VsZCBiZSBldmFsdWF0ZWQgYnkgY2VsbHMgb2YgdGhlIGltbXVuZSBzeXN0ZW0u[Qq]
[f]IE5vLiAmIzgyMjA7RCYjODIyMTsgaXMgcG9pbnRpbmcgdG8gYSBwaG9zcGhvbGlwaWQuIFBob3NwaG9saXBpZHMgZm9ybSB0aGUgcGhvc3Bob2xpcGlkIGJpbGF5ZXIsIHRoZSBrZXkgc3RydWN0dXJhbCBjb21wb25lbnQgb2YgdGhlIG1lbWJyYW5lLiBIZXJlJiM4MjE3O3MgYSBoaW50OiB5b3UmIzgyMTc7cmUgbG9va2luZyBmb3IgYSBtb2xlY3VsZSB0aGF0JiM4MjE3O3Mgc3RpY2tpbmcgb3V0IGZyb20gdGhlIG1lbWJyYW5lJiM4MjE3O3Mgb3V0ZXIgc3VyZmFjZSBpbnRvIHRoZSBleHRyYWNlbGx1bGFyIHNwYWNlIHdoZXJlIGl0IGNvdWxkIGJlIGV2YWx1YXRlZCBieSBjZWxscyBvZiB0aGUgaW1tdW5lIHN5c3RlbS4=[Qq]
[f]IE5vLiAmIzgyMjA7RSYjODIyMTsgaXMgcG9pbnRpbmcgdG8gYSBtZW1icmFuZSBwcm90ZWluLiBNZW1icmFuZSBwcm90ZWlucyBsaWtlICYjODIyMDtFJiM4MjIxOyBjYW4gYWN0IGFzIG1lbWJyYW5lLWVtYmVkZGVkIGVuenltZXMgb3IgYXR0YWNobWVudCBwb2ludHMgZm9yIHRoZSBjeXRvc2tlbGV0b24uIEhlcmUmIzgyMTc7cyBhIGhpbnQ6IHlvdSYjODIxNztyZSBsb29raW5nIGZvciBhIG1vbGVjdWxlIHRoYXQmIzgyMTc7cyBzdGlja2luZyBvdXQgZnJvbSB0aGUgbWVtYnJhbmUmIzgyMTc7cyBvdXRlciBzdXJmYWNlIGludG8gdGhlIGV4dHJhY2VsbHVsYXIgc3BhY2Ugd2hlcmUgaXQgY291bGQgYmUgZXZhbHVhdGVkIGJ5IGNlbGxzIG9mIHRoZSBpbW11bmUgc3lzdGVtLg==
Cg==[Qq]
[q json=”true” multiple_choice=”true” unit=”2.Cell Structure and Function” topic=”2.5.Membrane_Permeability” dataset_id=”Unit 2 Cumulative Multiple Choice (v2.0)|10fdd7833ea3e8″ question_number=”12″] A scientist has constructed an artificial cell membrane that consists solely of a phospholipid bilayer. A portion of this membrane is shown below.
Which of the following substances would diffuse most rapidly through this artificial membrane?
[c]IGdseWNvZ2VuIChhIHBvbHlzYWNjaGFyaWRlKQ==[Qq]
[f]IE5vLiBQb2x5c2FjY2hhcmlkZXMgbGlrZSBnbHljb2dlbiBhcmUgdG9vIGxhcmdlIHRvIGRpZmZ1c2UgdGhyb3VnaCBhIHBob3NwaG9saXBpZCBiaWxheWVyLiBOZXh0IHRpbWUsIGxvb2sgZm9yIGEgc3Vic3RhbmNlIHRoYXQmIzgyMTc7cyBzbWFsbCBhbmQgbm9ucG9sYXIu[Qq]
[c]IGdseWNpbmUgKGFuIGFtaW5vIGFjaWQp[Qq]
[f]IE5vLiBNb2xlY3VsZXMgd2l0aCBjaGFyZ2VzLCBsaWtlIHRoZSBhbWlubyBhY2lkIGdseWNpbmUsIGNhbiYjODIxNzt0IGRpZmZ1c2UgdGhyb3VnaCBhIHBob3NwaG9saXBpZCBiaWxheWVyLiBOZXh0IHRpbWUsIGxvb2sgZm9yIGEgc3Vic3RhbmNlIHRoYXQmIzgyMTc7cyBzbWFsbCBhbmQgbm9ucG9sYXIu[Qq]
[c]IGZydWN0b3NlIChhIG1vbm9zYWNjaGFyaWRlKQ==[Qq]
[f]IE5vLiBQb2xhciBtb2xlY3VsZXMgbGlrZSBmcnVjdG9zZSBjYW4mIzgyMTc7dCBkaWZmdXNlIHRocm91Z2ggdGhlIG5vbnBvbGFyIGludGVyaW9yIG9mIGEgcGhvc3Bob2xpcGlkIGJpbGF5ZXIuIE5leHQgdGltZSwgbG9vayBmb3IgYSBzdWJzdGFuY2UgdGhhdCYjODIxNztzIHNtYWxsIGFuZCBub25wb2xhci4=[Qq]
[c]IENhKysgwqAoY2FsY2l1bSBpb24p[Qq]
[f]IE5vLiBDaGFyZ2VkIGlvbnMgbGlrZSBjYWxjaXVtIGNhbiYjODIxNzt0IGRpZmZ1c2UgdGhyb3VnaCB0aGUgbm9ucG9sYXIgaW50ZXJpb3Igb2YgYSBwaG9zcGhvbGlwaWQgYmlsYXllci4gTmV4dCB0aW1lLCBsb29rIGZvciBhIHN1YnN0YW5jZSB0aGF0JiM4MjE3O3Mgc21hbGwgYW5kIG5vbnBvbGFyLg==[Qq]
[c]IE 8=MiA=KG94eWdlbiBtb2xlY3VsZSk=[Qq]
[f]IE5pY2VseSBkb25lLiBTbWFsbCwgbm9ucG9sYXIgbW9sZWN1bGVzIGxpa2Ugb3h5Z2VuIChhbG9uZyB3aXRoIG90aGVyIHN1Y2ggbW9sZWN1bGVzIGxpa2UgQ08=Mg==IGFuZCBOMg==KSBjYW4gZGlmZnVzZSB0aHJvdWdoIHBob3NwaG9saXBpZCBiaWxheWVycy4=
[Qq][q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 2 Cumulative Multiple Choice (v2.0)|10fdc03ac7bbe8″ question_number=”13″ unit=”2.Cell Structure and Function” topic=”2.5.Membrane_Permeability”] The permeability coefficient measures the ease with which a molecule passes through a cell membrane. The graph below displays the permeability coefficients for six different molecules with various solubilities in oil.
Which of the following statements is supported by the data in the graph?
[c]IEFsY29ob2wgaXMgbGVzcyBsaXBpZC1zb2x1YmxlIHRoYW4gd2F0ZXIu[Qq]
[f]IE5vLiBGaXJzdCwga2VlcCBpbiBtaW5kIHRoZSBmYWN0IHRoYXQgb2lsIGlzIGEgbGlwaWQsIHNvIHRoZSBYLWF4aXMgb24gdGhpcyBncmFwaCBpcyBzaG93aW5nIGxpcGlkIHNvbHViaWxpdHkuIEtub3dpbmcgdGhhdCwgdGFrZSBhbm90aGVyIGxvb2sgYXQgdGhlIGdyYXBoLiBXaGljaCBpcyBtb3JlIGxpcGlkIHNvbHVibGUgKGZ1cnRoZXIgdG8gdGhlIHJpZ2h0IG9uIHRoZSBYIGF4aXMpOiB3YXRlciBvciBhbGNvaG9sPw==[Qq]
[c]IEV4Y2VzcyB3YXRlciBpcyByZW1vdmVkIGZy b20gYSBjZWxsIGZhc3RlciB0aGFuIHVyZWEu[Qq]
[f]IEV4Y2VsbGVudC4gV2F0ZXIgaGFzIGEgaGlnaGVyIHBlcm1lYWJpbGl0eSBjb2VmZmljaWVudCB0aGFuIHVyZWE7IHRoZXJlZm9yZSwgd2F0ZXIgd291bGQgbW9yZSBlYXNpbHkgbW92ZSB0aHJvdWdoIHRoZSBjZWxsIG1lbWJyYW5lLg==[Qq]
[c]IERpZXRoeWx1cmVhIGNhbiBtb3JlIGVhc2lseSBtb3ZlIHRocm91Z2ggYSBjZWxsIG1lbWJyYW5lIHRoYW4gYWxjb2hvbC4=[Qq]
[f]IE5vLiBZb3UmIzgyMTc7cmUgdG9sZCBpbiB0aGUgcXVlc3Rpb24gdGhhdCB0aGUgcGVybWVhYmlsaXR5IGNvZWZmaWNpZW50IG1lYXN1cmVzIHRoZSBlYXNlIHdpdGggd2hpY2ggYSBzdWJzdGFuY2UgbW92ZXMgdGhyb3VnaCB0aGUgbWVtYnJhbmUuIExvb2sgYXQgdGhlIFktYXhpczogd2hpY2ggbW9sZWN1bGUsIGRpZXRoeWx1cmVhIG9yIGFsY29ob2wsIGhhcyBhIGhpZ2hlciBwZXJtZWFiaWxpdHkgY29lZmZpY2llbnQ/IFdoaWNoIG9uZSB3b3VsZCBtb3JlIGVhc2lseSBtb3ZlIHRocm91Z2ggdGhlIG1lbWJyYW5lPw==[Qq]
[c]IEV0aHlsZW5lIGdseWNvbCBjYW4gbW9yZSBlYXNpbHkgbW92ZSB0aHJvdWdoIGEgY2VsbCBtZW1icmFuZSB0aGFuIGNvZGVpbmUu[Qq]
[f]IE5vLiBZb3UmIzgyMTc7cmUgdG9sZCBpbiB0aGUgcXVlc3Rpb24gdGhhdCB0aGUgcGVybWVhYmlsaXR5IGNvZWZmaWNpZW50IG1lYXN1cmVzIHRoZSBlYXNlIHdpdGggd2hpY2ggYSBzdWJzdGFuY2UgbW92ZXMgdGhyb3VnaCB0aGUgbWVtYnJhbmUuIExvb2sgYXQgdGhlIFktYXhpczogd2hpY2ggbW9sZWN1bGUsIGV0aHlsZW5lIGdseWNvbCBvciBjb2RlaW5lLCBoYXMgYSBoaWdoZXIgcGVybWVhYmlsaXR5IGNvZWZmaWNpZW50PyBXaGljaCBvbmUgd291bGQgbW9yZSBlYXNpbHkgbW92ZSB0aHJvdWdoIHRoZSBtZW1icmFuZT8=
Cg==[Qq]
[q json=”true” multiple_choice=”true” unit=”2.Cell Structure and Function” topic=”2.6-7,_2.9.Membrane_Transport” dataset_id=”Unit 2 Cumulative Multiple Choice (v2.0)|10fdab465cb7e8″ question_number=”14″] The diagram below illustrates a process related to glucose homeostasis in liver cells.
The glucose is entering the cells by
[c]IHNpbXBsZSBkaWZmdXNpb24=[Qq]
[f]IE5vLiBJbiBzaW1wbGUgZGlmZnVzaW9uLCBhIG1vbGVjdWxlIHBhc3NlcyBkaXJlY3RseSB0aHJvdWdoIHRoZSBwaG9zcGhvbGlwaWQgYmlsYXllciwgYXMgc2hvd24gaW4gJiM4MjIwOzEmIzgyMjE7IGJlbG93LiBIZXJlJiM4MjE3O3MgYSBoaW50LiBXaGF0IGlzIHRoZSBuYW1lIGZvciB0aGUgdHlwZSBvZiB0cmFuc3BvcnQgc2hvd24gaW4gJiM4MjIwOzImIzgyMjE7IGJlbG93Pw==
Cg==[Qq]
[c]IHJlY2VwdG9yLW1lZGlhdGVkIGVuZG9jeXRvc2lz[Qq]
[f]IE5vLiBSZWNlcHRvci1tZWRpYXRlZCBlbmRvY3l0b3NpcyBsb29rcyBsaWtlIHdoYXQmIzgyMTc7cyBiZWxvdy4gSGVyZSYjODIxNztzIGEgaGludDogdGhpcyB3YXMgYSBmb3JtIG9mIGRpZmZ1c2lvbi4=
Cg==[Qq]
[c]IGFjdGl2ZSB0cmFuc3BvcnQ=[Qq]
[f]IE5vLiBBY3RpdmUgdHJhbnNwb3J0IGxvb2tzIGxpa2UgJiM4MjIwOzMmIzgyMjE7IGJlbG93LiBJdCBpbnZvbHZlcyBwdW1waW5nIGEgc29sdXRlIGZyb20gbG93ZXIgdG8gaGlnaGVyIGNvbmNlbnRyYXRpb24uIEhlcmUmIzgyMTc7cyBhIGhpbnQ6IHRoaXMgd2FzIGEgdHlwZSBvZiBkaWZmdXNpb24u
Cg==[Qq]
[c]IGZhY2lsaXRhdGVk IGRpZmZ1c2lvbg==[Qq]
[f]IEZhYnVsb3VzLiBUaGlzIHdhcyBmYWNpbGl0YXRlZCBkaWZmdXNpb24sIHdoaWNoIGludm9sdmVzIGRpZmZ1c2lvbiB0aHJvdWdoIGEgcHJvdGVpbiBjaGFubmVsLCBhcyBpbGx1c3RyYXRlZCBpbiAmIzgyMjA7MiYjODIyMTsgYmVsb3cu
Cg==Cg==[Qq]
[q json=”true” multiple_choice=”true” unit=”2.Cell Structure and Function” topic=”2.6-7,_2.9.Membrane_Transport” dataset_id=”Unit 2 Cumulative Multiple Choice (v2.0)|10fd7cb56ee7e8″ question_number=”15″] Estrogen is a steroid hormone. Its structural formula is shown below.
By which of the pathways below would estrogen diffuse through a cell’s membrane?
[c]IDHCoCDC oCDCoA==[Qq][c]IDLCoCDCoCDCoA==[Qq][c]IDM=
Cg==[Qq][f]IEdvb2Qgam9iLiBCZWNhdXNlIGVzdHJvZ2VuIGlzIGEgbm9ucG9sYXIgbGlwaWQsIGl0IGNhbiBzaW1wbHkgZGlmZnVzZSB0aHJvdWdoIHRoZSBwaG9zcGhvbGlwaWQgYmlsYXllciAoYXMgc2hvd24gaW4gJiM4MjIwOzEmIzgyMjE7IGFib3ZlKS4=[Qq]
[f]IE5vLsKgIEJlY2F1c2UgZXN0cm9nZW4gaXMgYSBub25wb2xhciBsaXBpZCwgaXQgY2FuIGRpZmZ1c2UgZGlyZWN0bHkgdGhyb3VnaCB0aGUgcGhvc3Bob2xpcGlkIGJpbGF5ZXIuIFdoaWNoIG51bWJlciBzaG93cyB0aGlzIHR5cGUgb2YgZGlmZnVzaW9uPw==[Qq]
[f]IE5vLiBOb3RpY2UgaG93IHRoZSBzdWJzdGFuY2UgcGFzc2luZyB0aHJvdWdoIHRoZSBtZW1icmFuZSBhdCAmIzgyMjA7MyYjODIyMTsgaXMgbW92aW5nIGZyb20gbG93ZXIgY29uY2VudHJhdGlvbiB0byBoaWdoZXIgY29uY2VudHJhdGlvbi4gVGhhdCYjODIxNztzIGFjdGl2ZSB0cmFuc3BvcnQuIE5leHQgdGltZSwgbG9vayBmb3IgYSBwYXRod2F5IHRoYXQgc2hvd3MgZGlmZnVzaW9uLg==
Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 2 Cumulative Multiple Choice (v2.0)|10fd67c103e3e8″ question_number=”16″ unit=”2.Cell Structure and Function” topic=”2.8.Tonicity_and_Osmoregulation”] Amoebas are unicellular protists that are found in aquatic environments.
The diagram below shows the same cell in three different environments. One of these environments (X) is the amoeba’s natural environment. Environments Y and Z have been experimentally manipulated.
Based on the information above, environment Y must be ________ to the amoeba’s natural environment.
[c]IGh5cG90b25pYw==[Qq]
[f]IE5vLiBSZW1lbWJlciB0aGF0IA==d2F0ZXIgYWx3YXlzIGZsb3dzIGZyb20gaHlwb3RvbmljIHRvIGh5cGVydG9uaWM=LiBZb3UmIzgyMTc7cmUgdG9sZCBhYm92ZSB0aGF0IFggaXMgdGhlIG5hdHVyYWwgZW52aXJvbm1lbnQuIFRoZSBhbW9lYmEgaW4gRW52aXJvbm1lbnQgWSBpcyBzbWFsbGVyIGFuZCBtb3JlIHNocml2ZWxlZCB1cCB0aGFuIHRoZSBhbW9lYmEgaW4gRW52aXJvbm1lbnQgWC4gV291bGQgdGhhdCBjaGFuZ2UgYmUgY2F1c2VkIGJ5IHdhdGVyIGVudGVyaW5nIHRoZSBhbW9lYmEsIG9yIGxlYXZpbmcgdGhlIGFtb2ViYT8gV2hhdCBraW5kIG9mIGVudmlyb25tZW50IGNvdWxkIGNhdXNlIHRoYXQgY2hhbmdlPw==[Qq]
[c]IGlzb3Rvbmlj[Qq]
[f]IE5vLiBSZW1lbWJlciB0aGF0IA==d2F0ZXIgYWx3YXlzIGZsb3dzIGZyb20gaHlwb3RvbmljIHRvIGh5cGVydG9uaWM=LiBZb3UmIzgyMTc7cmUgdG9sZCBhYm92ZSB0aGF0IFggaXMgdGhlIG5hdHVyYWwgZW52aXJvbm1lbnQuIFRoZSBhbW9lYmEgaW4gZW52aXJvbm1lbnQgWSBpcyBzbWFsbGVyIGFuZCBtb3JlIHNocml2ZWxlZCB1cCB0aGFuIHRoZSBhbW9lYmEgaW4gZW52aXJvbm1lbnQgWC4gV291bGQgdGhhdCBjaGFuZ2UgYmUgY2F1c2VkIGJ5IHdhdGVyIG1vdmluZyBhdCB0aGUgc2FtZSByYXRlIGJldHdlZW4gdGhlIGVudmlyb25tZW50IGFuZCB0aGUgY2VsbCAod2hpY2ggaXMgd2hhdCB3b3VsZCBoYXBwZW4gaW4gYW4gaXNvdG9uaWMgZW52aXJvbm1lbnQpPyBGb2N1cyBvbiB0aGVzZSBxdWVzdGlvbnM6IGlzIHdhdGVyIGVudGVyaW5nIHRoZSBhbW9lYmEsIG9yIGxlYXZpbmcgaXQ/IFdoYXQga2luZCBvZiBlbnZpcm9ubWVudCBjb3VsZCBjYXVzZSB0aGF0IGNoYW5nZT8=[Qq]
[c]IGh5cGVy dG9uaWM=[Qq]
[f]IEV4Y2VsbGVudC4gV2F0ZXIgb2J2aW91c2x5IGxlZnQgdGhlIGFtb2ViYSwgY2F1c2luZyBpdCB0byBzaHJpdmVsIHVwLiBCZWNhdXNlIHdhdGVyIGFsd2F5cyBmbG93cyBmcm9tIGh5cG90b25pYyB0byBoeXBlcnRvbmljLCB0aGF0IHdvdWxkIG9ubHkgaGFwcGVuIGlmIHRoZSBjZWxsIHdlcmUgaW4gYSBoeXBlcnRvbmljIGVudmlyb25tZW50Lg==[Qq]
[c]IG1lc290b25pYw==[Qq]
[f]IE5vLiAmIzgyMjA7TWVzb3RvbmljJiM4MjIxOyBpcyBhIGJvdGFueSB3b3JkOiBpdCBtZWFucyAmIzgyMjA7QSB0eXBlIG9mIGJyYW5jaGluZyBvciBncm93dGggd2hlcmUgdGhlIHNob290cyBuZWFyZXN0IHRoZSBtaWRkbGUgb2YgdGhlIHN0ZW0gb3IgYnJhbmNoIHNob3cgdGhlIGdyZWF0ZXN0IGRldmVsb3BtZW50LiYjODIyMTsgTmV4dCB0aW1lLCBjaG9vc2UgYW4gYW5zd2VyIHJlbGF0ZWQgdG8gb3Ntb3Npcy4=
Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 2 Cumulative Multiple Choice (v2.0)|10fd50788cfbe8″ question_number=”17″ unit=”2.Cell Structure and Function” topic=”2.8.Tonicity_and_Osmoregulation”] A part found in plant cells but not in animal cells that allows plant cells to thrive in hypotonic environments is/are
[c]IGFxdWFwb3JpbnM=[Qq]
[f]IE5vLiBBcXVhcG9yaW5zIGFyZSBtZW1icmFuZSBjaGFubmVscyB0aGF0IGZhY2lsaXRhdGUgdGhlIGZsb3cgb2Ygd2F0ZXIgYWNyb3NzIHRoZSBtZW1icmFuZS4gVGhlIGNoYWxsZW5nZSBvZiBhIGNlbGwgaW4gYSBoeXBvdG9uaWMgZW52aXJvbm1lbnQgaXMgdG8gYXZvaWQgYnVyc3RpbmcgYXMgd2F0ZXIgZmxvd3MgZnJvbSB0aGUgaHlwb3RvbmljIGVudmlyb25tZW50IGludG8gdGhlIGh5cGVydG9uaWMgY2VsbCwgYXMgc2hvd24gaW4gdGhlIHJlZCBibG9vZCBjZWxscyBvbiB0aGUgcmlnaHQgc2lkZSBvZiB0aGUgZGlhZ3JhbSBiZWxvdy4=
Cg==Cg==[Qq]What plant cell structure could prevent a cell from bursting due to osmotic pressure?
[c]IGNobG9yb3BsYXN0cw==[Qq]
[f]IE5vLiBUaGUgZnVuY3Rpb24gb2YgdGhlIGNobG9yb3BsYXN0IGlzIHBob3Rvc3ludGhlc2lzLg==
Cg==SGVyZSYjODIxNztzIGhvdyB0byB0aGluayBhYm91dCB0aGlzIHF1ZXN0aW9uLiBUaGUgY2hhbGxlbmdlIG9mIGEgY2VsbCBpbiBhIGh5cG90b25pYyBlbnZpcm9ubWVudCBpcyB0byBhdm9pZCBidXJzdGluZyBhcyB3YXRlciBmbG93cyBmcm9tIHRoZSBoeXBvdG9uaWMgZW52aXJvbm1lbnQgaW50byB0aGUgaHlwZXJ0b25pYyBjZWxsLCBhcyBzaG93biBpbiB0aGUgcmVkIGJsb29kIGNlbGxzIG9uIHRoZSByaWdodCBzaWRlIG9mIHRoZSBkaWFncmFtIGJlbG93Lg==
Cg==[Qq]
What plant cell structure could prevent a cell from bursting due to osmotic pressure?
[c]IGdvbGdpIGJvZGllcw==[Qq]
[f]IE5vLiBUaGUgZnVuY3Rpb24gb2YgdGhlIEdvbGdpIGJvZHkgaXMgcGFja2FnaW5nIGFuZCBkaXN0cmlidXRpbmcgdGhlIHByb3RlaW5zIGl0IHJlY2VpdmVzIGZyb20gdGhlIGVuZG9wbGFzbWljIHJldGljdWx1bS4=
Cg==SGVyZSYjODIxNztzIGhvdyB0byB0aGluayBhYm91dCB0aGlzIHF1ZXN0aW9uLiBUaGUgY2hhbGxlbmdlIG9mIGEgY2VsbCBpbiBhIGh5cG90b25pYyBlbnZpcm9ubWVudCBpcyB0byBhdm9pZCBidXJzdGluZyBhcyB3YXRlciBmbG93cyBmcm9tIHRoZSBoeXBvdG9uaWMgZW52aXJvbm1lbnQgaW50byB0aGUgaHlwZXJ0b25pYyBjZWxsLCBhcyBzaG93biBpbiB0aGUgcmVkIGJsb29kIGNlbGxzIG9uIHRoZSByaWdodCBzaWRlIG9mIHRoZSBkaWFncmFtIGJlbG93Lg==
Cg==[Qq]
What plant cell structure could prevent a cell from bursting due to osmotic pressure?
[c]IHRoZSBjZW xsIHdhbGw=[Qq]
[f]IEV4Y2VsbGVudC4gVGhlIGNlbGwgd2FsbCBpcyB3aGF0IHBsYW50IGNlbGxzIHVzZSB0byBrZWVwIGZyb20gYnVyc3RpbmcgZnJvbSBvc21vdGljIHByZXNzdXJlIGluIGEgaHlwb3RvbmljIGVudmlyb25tZW50LCBhcyBzaG93biBpbiB0aGUgY2VsbCBvbiB0aGUgcmlnaHQgYmVsb3cu
Cg==[Qq]
[c]IHRoZSByb3VnaCBlbmRvcGxhc21pYyByZXRpY3VsdW0=[Qq]
[f]IE5vLiBUaGUgZnVuY3Rpb24gb2YgdGhlIHJvdWdoIEUuUi4gaXMgc3ludGhlc2l6aW5nIHByb3RlaW5zIHRoYXQgYXJlIGRlc3RpbmVkIGZvciBleHBvcnQsIG9yIGluY29ycG9yYXRpb24gd2l0aGluIGNlbGx1bGFyIG9yZ2FuZWxsZXMu
Cg==SGVyZSYjODIxNztzIGhvdyB0byB0aGluayBhYm91dCB0aGlzIHF1ZXN0aW9uLiBUaGUgY2hhbGxlbmdlIG9mIGEgY2VsbCBpbiBhIGh5cG90b25pYyBlbnZpcm9ubWVudCBpcyB0byBhdm9pZCBidXJzdGluZyBhcyB3YXRlciBmbG93cyBmcm9tIHRoZSBoeXBvdG9uaWMgZW52aXJvbm1lbnQgaW50byB0aGUgaHlwZXJ0b25pYyBjZWxsLCBhcyBzaG93biBpbiB0aGUgcmVkIGJsb29kIGNlbGxzIG9uIHRoZSByaWdodCBzaWRlIG9mIHRoZSBkaWFncmFtIGJlbG93Lg==
Cg==[Qq]
What plant cell structure could prevent a cell from bursting due to osmotic pressure?
[q json=”true” multiple_choice=”true” unit=”2.Cell Structure and Function” topic=”2.10.Compartmentalization” dataset_id=”Unit 2 Cumulative Multiple Choice (v2.0)|10fd36dc0a2fe8″ question_number=”18″] In the diagram below, “X” and “Y” are parts of an organelle found in eukaryotic cells.
The structures at letter “Y” (the dots) correspond to which number on the diagram?
[c]ID Ig[Qq][c]IDUg[Qq][c]IDYg[Qq][c]IDc=
Cg==[Qq][f]IE5pY2UhIExldHRlciBZIGlzIGEgcmlib3NvbWUgb24gdGhlIHJvdWdoIEUuUi4sIGFuZCBjb3JyZXNwb25kcyB0byBudW1iZXIgJiM4MjIwOzImIzgyMjE7IG9uIHRoZSBkaWFncmFtLg==[Qq]
[f]IE5vLiBIZXJlJiM4MjE3O3MgYSBoaW50LiBUaGUgb3JnYW5lbGxlIGlzIHRoZSByb3VnaCBFLlIuIChlbmRvcGxhc21pYyByZXRpY3VsdW0pLiBMZXR0ZXIgJiM4MjIwO1kmIzgyMjE7IGlzIHdoYXQgbWFrZXMgdGhlIHJvdWdoIEUuUi4gJiM4MjIwO3JvdWdoLiYjODIyMTs=[Qq]
[f]IE5vLiBIZXJlJiM4MjE3O3MgYSBoaW50LiBUaGUgb3JnYW5lbGxlIGlzIHRoZSByb3VnaCBFLlIuIChlbmRvcGxhc21pYyByZXRpY3VsdW0pLiBMZXR0ZXIgJiM4MjIwO1kmIzgyMjE7IGlzIHdoYXQgbWFrZXMgdGhlIHJvdWdoIEUuUi4gJiM4MjIwO3JvdWdoLiYjODIyMTs=[Qq]
[f]IE5vLiBIZXJlJiM4MjE3O3MgYSBoaW50LiBUaGUgb3JnYW5lbGxlIGlzIHRoZSByb3VnaCBFLlIuIChlbmRvcGxhc21pYyByZXRpY3VsdW0pLiBMZXR0ZXIgJiM4MjIwO1kmIzgyMjE7IGlzIHdoYXQgbWFrZXMgdGhlIHJvdWdoIEUuUi4gJiM4MjIwO3JvdWdoLiYjODIyMTs=
Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 2 Cumulative Multiple Choice (v2.0)|10fce55e6a03e8″ question_number=”19″ unit=”2.Cell Structure and Function” topic=”2.11.Origins_of_Cell_Compartmentalization”] Which of the following pairs of statements is correct?
[c]IFBsYW50IGNlbGxzIGNhbiBjaGFuZ2Ugc2hhcGUuIFByb2thcnlvdGljIGNlbGxzIGhhdmUgYSBmaXhlZCBzaGFwZS4=[Qq]
[f]IE5vLiBBbGwgcGxhbnQgY2VsbHMgaGF2ZSBhIGNlbGwgd2FsbCwgc28gdGhlaXIgYWJpbGl0eSB0byBjaGFuZ2Ugc2hhcGUgaXMgdmVyeSBsaW1pdGVkLg==[Qq]
[c]IFBsYW50IGNlbGwgRE5BIGlzIGFzc29jaWF0ZWQgd2l0aCBwcm90ZWluLiBQ cm9rYXJ5b3RpYyBjZWxsIEROQSBpcyAmIzgyMjA7bmFrZWQmIzgyMjE7Lg==[Qq]
[f]IE5pY2Ugam9iLiBMaWtlIGFsbCBldWthcnlvdGljIEROQSwgcGxhbnQgY2VsbCBETkEgaXMgYXNzb2NpYXRlZCB3aXRoIGEgdmFyaWV0eSBvZiBwcm90ZWlucywgZXNwZWNpYWxseSBoaXN0b25lcy4gUHJva2FyeW90aWMgRE5BIGlzIG5vdCBhc3NvY2lhdGVkIHdpdGggYW55IHNwZWNpYWwgcHJvdGVpbnMu[Qq]
[c]IEJvdGggcGxhbnQgY2VsbHMgYW5kIHByb2thcnlvdGljIGNlbGxzIG1heSBjb250YWluIGNobG9yb3BsYXN0cy4=[Qq]
[f]IE5vLiBNYW55IHBsYW50IGNlbGxzICh0aG9zZSBpbiBsZWF2ZXMpIGNvbnRhaW4gY2hsb3JvcGxhc3RzLiBCdXQgeW91IHdvdWxkbiYjODIxNzt0IGZpbmQgY2hsb3JvcGxhc3RzIHdpdGhpbiBhIHByb2thcnlvdGljIGNlbGwu[Qq]
[c]IFBsYW50IGNlbGwgRE5BIGlzIGVuY2xvc2VkIGJ5IGEgbWVtYnJhbmUuIFByb2thcnlvdGljIGNlbGwgRE5BIGlzIGFzc29jaWF0ZWQgd2l0aCBwcm90ZWluLg==[Qq]
[f]IE5vLiBXaGlsZSBwbGFudCBjZWxsIEROQSBpcyBlbmNsb3NlZCBieSBhIG1lbWJyYW5lICh0aGUgbnVjbGVhciBtZW1icmFuZSksIHByb2thcnlvdGljIEROQSBpcyBub3QgYXNzb2NpYXRlZCB3aXRoIGFueSBzcGVjaWFsIHByb3RlaW5zIChzdWNoIGFzIHRoZSBoaXN0b25lIHByb3RlaW5zIG9mIGV1a2FyeW90aWMgY2VsbHMpLg==
Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” unit=”2.Cell Structure and Function” topic=”2.11.Origins_of_Cell_Compartmentalization” dataset_id=”Unit 2 Cumulative Multiple Choice (v2.0)|10fc1f76774fe8″ question_number=”20″] Chloroplasts have two membranes and are thought to have arisen from the endocytosis of free-living organisms related to the cyanobacteria that were engulfed by another organism. If an early single-celled eukaryotic organism containing a chloroplast was engulfed by another eukaryotic organism, how many membranes would separate the chloroplast stroma from the external environment? A diagram of a chloroplast is shown for reference.
[c]IDIg[Qq][c]IDMg[Qq][c]IDQg[Qq][c]ID U=
Cg==[Qq][f]IE5vLiBUaGF0JiM4MjE3O3Mgbm90IGVub3VnaC4gTG9vayBhdCB0aGUgZGlhZ3JhbSBhYm92ZSwgYW5kIGNvdW50IGhvdyBtYW55IG1lbWJyYW5lcyBzZXBhcmF0ZSB0aGUgc3Ryb21hIGZyb20gdGhlIGV4dGVyaW9yIG9mIHRoZSBjaGxvcm9wbGFzdC4gTm93IGFkZCBhIG1lbWJyYW5lIGZyb20gdGhlIGVhcmx5IHNpbmdsZS1jZWxsZWQgZXVrYXJ5b3RlIGRlc2NyaWJlZCBhYm92ZS4gVGhlbiBhZGQgYWRkaXRpb25hbCBtZW1icmFuZXMgdGhhdCB3b3VsZCByZXN1bHQgZnJvbSBlbmRvY3l0b3NpcyBhbmQgdGhlIGNlbGwgbWVtYnJhbmUgb2YgdGhlIGVuZ3VsZmluZyBvcmdhbmlzbS4=[Qq]
[f]IE5vLiBUaGF0JiM4MjE3O3Mgbm90IGVub3VnaC4gTG9vayBhdCB0aGUgZGlhZ3JhbSBhYm92ZSwgYW5kIGNvdW50IGhvdyBtYW55IG1lbWJyYW5lcyBzZXBhcmF0ZSB0aGUgc3Ryb21hIGZyb20gdGhlIGV4dGVyaW9yIG9mIHRoZSBjaGxvcm9wbGFzdC4gTm93IGFkZCBhIG1lbWJyYW5lIGZyb20gdGhlIGVhcmx5IHNpbmdsZS1jZWxsZWQgZXVrYXJ5b3RlIGRlc2NyaWJlZCBhYm92ZS4gVGhlbiBhZGQgYWRkaXRpb25hbCBtZW1icmFuZXMgdGhhdCB3b3VsZCByZXN1bHQgZnJvbSBlbmRvY3l0b3NpcyBhbmQgdGhlIGNlbGwgbWVtYnJhbmUgb2YgdGhlIGVuZ3VsZmluZyBvcmdhbmlzbS4=[Qq]
[f]IE5vLiBUaGF0JiM4MjE3O3Mgbm90IGVub3VnaC4gTG9vayBhdCB0aGUgZGlhZ3JhbSBhYm92ZSwgYW5kIGNvdW50IGhvdyBtYW55IG1lbWJyYW5lcyBzZXBhcmF0ZSB0aGUgc3Ryb21hIGZyb20gdGhlIGV4dGVyaW9yIG9mIHRoZSBjaGxvcm9wbGFzdC4gTm93IGFkZCBhIG1lbWJyYW5lIGZyb20gdGhlIGVhcmx5IHNpbmdsZS1jZWxsZWQgZXVrYXJ5b3RlIGRlc2NyaWJlZCBhYm92ZS4gVGhlbiBhZGQgYWRkaXRpb25hbCBtZW1icmFuZXMgdGhhdCB3b3VsZCByZXN1bHQgZnJvbSBlbmRvY3l0b3NpcyBhbmQgdGhlIGNlbGwgbWVtYnJhbmUgb2YgdGhlIGVuZ3VsZmluZyBvcmdhbmlzbS4=[Qq]
[f]IEV4Y2VsbGVudC4gWW91JiM4MjE3O3ZlIGFjY291bnRlZCBmb3IgdGhlIHR3byBtZW1icmFuZXMgdGhhdCBzZXBhcmF0ZSB0aGUgc3Ryb21hIGZyb20gdGhlIGV4dGVyaW9yIG9mIHRoZSBjaGxvcm9wbGFzdCAoMSBhbmQgMiBiZWxvdyksIHBsdXMgdGhlIG1lbWJyYW5lIGZyb20gdGhlIGVhcmx5IHNpbmdsZS1jZWxsZWQgZXVrYXJ5b3RlIGRlc2NyaWJlZCBhYm92ZSAoMyksIHBsdXMgdGhlIGFkZGl0aW9uYWwgbWVtYnJhbmVzIHRoYXQgd291bGQgcmVzdWx0IGZyb20gZW5kb2N5dG9zaXMgKDQpIGFuZCB0aGUgY2VsbCBtZW1icmFuZSBvZiB0aGUgZW5ndWxmaW5nIG9yZ2FuaXNtICg1KQ==
Cg==Cg==[Qq][restart]
[/qwiz]
4. Unit 2 Cumulative Multiple Choice Quiz 2
[qwiz style=”width: 550px !important; min-height: 400px !important;” dataset=”Unit 2 Cumulative Multiple Choice Quiz 2 (v2.0)” qrecord_id=”sciencemusicvideosMeister1961-Unit 2 Multiple Choice Quiz 2″]
[h] Unit 3 Multiple Choice Review Quiz 2
[i]
[q json=”true” xyz=”2″ multiple_choice=”true” unit=”2.Cell Structure and Function” dataset_id=”Unit 2 Cumulative Multiple Choice Quiz 2 (v2.0)|2236a062d70033″ question_number=”1″ topic=”2.1-2.2.Cell Parts”] Which letter in the diagram below represents a vesicle?
[c]IEEg[Qq][c]IEIg[Qq][c]IE Mg[Qq][c]IEQg[Qq][c]IEU=
Cg==[Qq][f]IE5vLiBMZXR0ZXIgQSByZXByZXNlbnRzIHRoZSByb3VnaCBFLlIu[Qq]
[f]IE5vLiBCIGlzIGEgcHJvdGVpbiAob3Igb3RoZXIgc3Vic3RhbmNlKSB0aGF0JiM4MjE3O3MgYmVpbmcgZXhwb3J0ZWQgZnJvbSB0aGUgY2VsbCB0aHJvdWdoIGV4b2N5dG9zaXMu[Qq]
[f]IE5pY2Ugam9iISBDIGlzIGEgdmVzaWNsZSwgbW92aW5nIHN1YnN0YW5jZXMgZnJvbSB0aGUgR29sZ2kgQXBwYXJhdHVzIHRvIChpbiB0aGlzIGNhc2UpIHRoZSBtZW1icmFuZS4=[Qq]
[f]IE5vLCBidXQgeW91JiM4MjE3O3JlIGNsb3NlLiBEIGlzIHRoZSBHb2xnaSBBcHBhcmF0dXMuIFRoZSBHb2xnaSBBcHBhcmF0dXMgYnVkcyBvZmYgdmVzaWNsZXMgYXMgaXQgc2VuZHMgbWF0ZXJpYWxzIHRvIHRoZSBtZW1icmFuZSBvciBzcGVjaWZpYyBvcmdhbmVsbGVzLg==[Qq]
[f]IE5vLiBFIHJlcHJlc2VudHMgdGhlIGNlbGwmIzgyMTc7cyByaWJvc29tZXMu
Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” unit=”2.Cell Structure and Function” dataset_id=”Unit 2 Cumulative Multiple Choice Quiz 2 (v2.0)|22368b6e6bfc33″ question_number=”2″ topic=”2.1-2.2.Cell Parts”] Which letter in the diagram below represents a ribosome?
[c]IEEg[Qq][c]IEIg[Qq][c]IEMg[Qq][c]IEQg[Qq][c]IE U=
Cg==[Qq][f]IE5vLiBBIGlzIHRoZSBSb3VnaCBFbmRvcGxhc21pYyBSZXRpY3VsdW0uIEhlcmUmIzgyMTc7cyBhIGhpbnQ6IHdoYXQmIzgyMTc7cyBtYWtpbmcgaXQgcm91Z2g/[Qq]
[f]IE5vLiBCIHJlcHJlc2VudHMgYSBwcm90ZWluIChvciBhbm90aGVyIHN1YnN0YW5jZSkgdGhhdCYjODIxNztzIGJlZW4gZXhwb3J0ZWQgZnJvbSB0aGUgY2VsbC4gSGVyZSYjODIxNztzIGEgaGludDogdGhlIGFuc3dlciBpcyByZWZlcnJpbmcgdG8gdGhlIHBhcnRpY2xlcyB0aGF0IG1ha2UgdGhlIHJvdWdoIEUuUi4gcm91Z2gu[Qq]
[f]IE5vLiBDIGlzIGEgdmVzaWNsZSB0aGF0JiM4MjE3O3MgYnVkZGVkIG9mZiBvZiB0aGUgR29sZ2kgYXBwYXJhdHVzLiBIZXJlJiM4MjE3O3MgYSBoaW50OiB0aGUgYW5zd2VyIGlzIHJlZmVycmluZyB0byB0aGUgcGFydGljbGVzIHRoYXQgbWFrZSB0aGUgcm91Z2ggRS5SLiByb3VnaC4=[Qq]
[f]IE5vLiBEIGlzIHRoZSBHb2xnaSBBcHBhcmF0dXMuIEhlcmUmIzgyMTc7cyBhIGhpbnQ6IHRoZSBhbnN3ZXIgaXMgcmVmZXJyaW5nIHRvIHRoZSBwYXJ0aWNsZXMgdGhhdCBtYWtlIHRoZSByb3VnaCBFLlIuIHJvdWdoLg==[Qq]
[f]IEZhbnRhc3RpYy4gRSByZWZlcnMgdG8gdGhlIGRvdHMgb24gdGhlIFJvdWdoIEVuZG9wbGFzbWljIHJldGljdWx1bS4gVGhlc2UgZG90cyAod2hpY2ggbWFrZSB0aGUgcm91Z2ggRS5SLiByb3VnaCkgYXJlIHJpYm9zb21lcy4=
Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” unit=”2.Cell Structure and Function” dataset_id=”Unit 2 Cumulative Multiple Choice Quiz 2 (v2.0)|2236662dadbc33″ question_number=”3″ topic=”2.1-2.2.Cell Parts”] Based on the structure of the cell below, it is most likely to
[c]IHVzZSBsaWdodCBlbmVyZ3kgdG8gY3JlYXRlIEFUUCBieSBwaG90b3Bob3NwaG9yeWxhdGlvbi4=[Qq]
[f]IE5vLiBUaGF0IHdvdWxkIGJlIGEgZ3JlYXQgYW5zd2VyIGlmIHRoZSBjZWxsIHdlcmUgZnVsbCBvZiBjaGxvcm9wbGFzdHMgYmVjYXVzZSB0aGF0JiM4MjE3O3MgZXhhY3RseSB3aGF0IGhhcHBlbnMgaW4gdGhlIGxpZ2h0IHJlYWN0aW9ucyBvZiBwaG90b3N5bnRoZXNpcy4gSG93ZXZlciwgaW4gYWRkaXRpb24gdG8gY2hsb3JvcGxhc3RzLCB0aGUgY2VsbCB3b3VsZCBhbHNvIGhhdmUgdG8gaGF2ZSBhIGNlbGwgd2FsbCwgZ2l2aW5nIGl0IGEgZGlmZmVyZW50IG92ZXJhbGwgc2hhcGUsIGFuZCBhIGZldyBvdGhlciBkaWZmZXJlbmNlcy4gSGVyZSYjODIxNztzIGEgaGludDogdGhlIG9yZ2FuZWxsZXMgZmlsbGluZyB1cCB0aGlzIGNlbGwgYXJlIG1pdG9jaG9uZHJpYS4=[Qq]
[c]IHJlcXVpcmUgaGlnaCBsZX ZlbHMgb2Ygb3h5Z2VuLg==[Qq]
[f]IEV4Y2VsbGVudC4gVGhlIG9yZ2FuZWxsZXMgdGhhdCBhcmUgZmlsbGluZyB1cCB0aGlzIGNlbGwgYXJlIG1pdG9jaG9uZHJpYS4gVGhlaXIga2V5IHJvbGUgaXMgQVRQIHByb2R1Y3Rpb24gdGhyb3VnaCBveGlkYXRpdmUgcGhvc3Bob3J5bGF0aW9uLCBhbmQgYSBjZWxsIHdpdGggdGhpcyBtYW55IG1pdG9jaG9uZHJpYSB3b3VsZCBuZWVkIGEgbG90IG9mIG94eWdlbi4=[Qq]
[c]IGNvbnZlcnQgY2FyYm9uIGRpb3hpZGUgaW50byBnbHVjb3Nl[Qq]
[f]IE5vLiBUaGF0IHdvdWxkIGJlIGEgZ3JlYXQgYW5zd2VyIGlmIHRoZSBjZWxsIHdlcmUgZnVsbCBvZiBjaGxvcm9wbGFzdHMgYmVjYXVzZSB0aGF0JiM4MjE3O3MgZXhhY3RseSB3aGF0IGhhcHBlbnMgaW4gdGhlIENhbHZpbiBDeWNsZSBvZiBwaG90b3N5bnRoZXNpcywgd2hlcmUgY2FyYm9uIGRpb3hpZGUgaXMgY2hlbWljYWxseSByZWR1Y2VkIGludG8gc3VnYXJzLiBIZXJlJiM4MjE3O3MgYSBoaW50OiB0aGUgb3JnYW5lbGxlcyBmaWxsaW5nIHVwIHRoaXMgY2VsbCBhcmUgbWl0b2Nob25kcmlhLg==[Qq]
[c]IGJlIGEgbWF0dXJlIHJlZCBibG9vZCBjZWxsLg==[Qq]
[f]IE5vLiBBIG1hdHVyZSByZWQgYmxvb2QgY2VsbCBpcyBhbiBleHRyZW1lbHkgc3BlY2lhbGl6ZWQgYW5kIHNpbXBsaWZpZWQgY2VsbC4gSXQmIzgyMTc7cyBlc3NlbnRpYWxseSBhIG1lbWJyYW5lIGZpbGxlZCB3aXRoIHRoZSBveHlnZW4tY2FycnlpbmcgcHJvdGVpbiBoZW1vZ2xvYmluLiBSZWQgYmxvb2QgY2VsbHMgbGFjayBtb3N0IG9mIHRoZSBvcmdhbmVsbGVzIGZvdW5kIGluIHRoZSBvdGhlciBjZWxscyBvZiBhbmltYWxzLCBzdWNoIGFzIGEgbnVjbGV1cyBhbmQgbWl0b2Nob25kcmlhLiBBbmQgdGhhdCBpcyBhIGhpbnQgYXMgdG8gdGhlIGFuc3dlcjogdGhlIG9yZ2FuZWxsZXMgZmlsbGluZyB1cCB0aGlzIGNlbGwgYXJlIG1pdG9jaG9uZHJpYS4=
Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” unit=”2.Cell Structure and Function” dataset_id=”Unit 2 Cumulative Multiple Choice Quiz 2 (v2.0)|22364ee536d433″ question_number=”4″ topic=”2.1-2.2.Cell Parts”] If number 5 represents a newly synthesized protein, then 6 would most likely be
[c]IGEgcmlib3NvbWUu[Qq]
[f]IE5vLiBSaWJvc29tZXMgYXJlIHdoZXJlIHByb3RlaW5zIGFyZSBzeW50aGVzaXplZC4gSWYgNSByZXByZXNlbnRzIGEgcHJvdGVpbiwgdGhlbiA2IHdvdWxkIHJlcHJlc2VudCBhIHBhcnQgb2YgdGhlIGNlbGwgd2hlcmUgcHJvdGVpbnMgZ28gYWZ0ZXIgc3ludGhlc2lzLiA=V2hhdCBwYXJ0IG9mIGEgZXVrYXJ5b3RpYyBjZWxsIGlzIHJlc3BvbnNpYmxlIGZvciBtb2RpZnlpbmcgYW5kIHBhY2thZ2luZyBwcm90ZWlucz8=[Qq]
[c]IGEgbWl0b2Nob25kcmlvbi4=[Qq]
[f]IE5vLiBNaXRvY2hvbmRyaWEgYXJlIG9yZ2FuZWxsZXMgaW52b2x2ZWQgaW4gQVRQIHN5bnRoZXNpcyBhbmQgYXJlbiYjODIxNzt0IHJlcHJlc2VudGVkIGFueXdoZXJlIGFib3ZlLiBIZXJlJiM4MjE3O3MgYSBoaW50OiBJZiA1IHJlcHJlc2VudHMgYSBwcm90ZWluLCB0aGVuIDYgd291bGQgcmVwcmVzZW50IGEgcGFydCBvZiB0aGUgY2VsbCB3aGVyZSBwcm90ZWlucyBnbyBhZnRlciBzeW50aGVzaXMuIFdoYXQgcGFydCBvZiBhIGV1a2FyeW90aWMgY2VsbCBpcyByZXNwb25zaWJsZSBmb3IgbW9kaWZ5aW5nIGFuZCBwYWNrYWdpbmcgcHJvdGVpbnM/[Qq]
[c]IHRoZSBHb2xnaS BDb21wbGV4Lg==[Qq]
[f]IEZhYnVsb3VzISBJZiA1IHJlcHJlc2VudHMgYSBwcm90ZWluLCB0aGVuIDYgd291bGQgYmUgdGhlIEdvbGdpIGNvbXBsZXgu[Qq]
[c]IHRoZSByb3VnaCBlbmRvcGxhc21pYyByZXRpY3VsdW0u[Qq]
[f]IE5vLiBUaGUgcm91Z2ggZW5kb3BsYXNtaWMgcmV0aWN1bHVtIGlzIHdoZXJlIHByb3RlaW5zIGRlc3RpbmVkIGZvciBleHBvcnQgKG9yIGZvciBhIGx5c29zb21lKSBhcmUgc3ludGhlc2l6ZWQuIFRoZSBxdWVzdGlvbiB0ZWxscyB5b3UgdGhhdCA1IGlzIGEgcHJvdGVpbiB0aGF0IGhhcyBhbHJlYWR5IGJlZW4gc3ludGhlc2l6ZWQuIEFmdGVyIGJlaW5nIHN5bnRoZXNpemVkLCB3aGVyZSB3b3VsZCBhIHByb3RlaW4gZ28gdG8gYmUgbW9kaWZpZWQgYW5kIHBhY2thZ2VkPw==
Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 2 Cumulative Multiple Choice Quiz 2 (v2.0)|223639f0cbd033″ question_number=”5″ unit=”2.Cell Structure and Function” topic=”2.1-2.2.Cell Parts”] Which of the following organelles is correctly paired with its function in a cell?
[c]IEx5c29zb21lLCBjZWxsdWxhciBtb3ZlbWVudA==[Qq]
[f]IE5vLiBMeXNvc29tZXMgYXJlIHJlc3BvbnNpYmxlIGZvciBpbnRyYWNlbGx1bGFyIGRpZ2VzdGlvbi4gQ2VsbHVsYXIgbW92ZW1lbnQgaXMgdGhlIGZ1bmN0aW9uIG9mIGZsYWdlbGxhIG9yIGNpbGlhLg==[Qq]
[c]IFJpYm9zb21lLCBtYW51ZmFjdHVyaW5nIG9mIGxpcGlkcw==[Qq]
[f]IE5vLiBSaWJvc29tZXMgYXJlIHJlc3BvbnNpYmxlIGZvciBwcm90ZWluIHN5bnRoZXNpcy4gTWFudWZhY3R1cmluZyBsaXBpZHMgaXMgdGhlIGZ1bmN0aW9uIG9mIHRoZSBzbW9vdGggZW5kb3BsYXNtaWMgcmV0aWN1bHVtLg==[Qq]
[c]IENlbnRyYWwgdmFjdW9sZSwgc3RvcmFn ZSBvZiBtYXRlcmlhbHMgYW5kIHdhc3Rl[Qq]
[f]IFdheSB0byBnbyEgVGhlIGNlbnRyYWwgdmFjdW9sZSYjODIxNztzIGZ1bmN0aW9uIGlzIHRoZSBzdG9yYWdlIG9mIG1hdGVyaWFscyBhbmQgd2FzdGUgcHJvZHVjdHMu[Qq]
[c]IE51Y2xldXMsIHdoZXJlIGNlbGx1bGFyIHJlc3BpcmF0aW9uIG9jY3Vycw==[Qq]
[f]IE5vLiBUaGUgZnVuY3Rpb24gb2YgdGhlIG51Y2xldXMgaXMgdG8gaG9sZCBhbmQgcHJvdGVjdCBjaHJvbW9zb21lcy4gQ2VsbHVsYXIgcmVzcGlyYXRpb24gb2NjdXJzIGluIG1pdG9jaG9uZHJpYS4=[Qq]
[c]IE1pdG9jaG9uZHJpb24sIHdoZXJlIHBob3Rvc3ludGhlc2lzIG9jY3Vycw==[Qq]
[f]IE5vLiBUaGUgZnVuY3Rpb24gb2YgdGhlIG1pdG9jaG9uZHJpYSBpcyB0aGUgcHJvZHVjdGlvbiBvZiBBVFAuIFBob3Rvc3ludGhlc2lzIG9jY3VycyBpbiBjaGxvcm9wbGFzdHMu
Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 2 Cumulative Multiple Choice Quiz 2 (v2.0)|22362054490433″ question_number=”6″ unit=”2.Cell Structure and Function” topic=”2.1-2.2.Cell Parts”] Which of the following groups of organelles produce molecules that are necessary for the cell to sustain life?
[c]IEx5c29zb21lLCByb3VnaCBFUiwgdmFjdW9sZQ==[Qq]
[f]IE5vLiBUaGUgbHlzb3NvbWUgaXMgYSBkaWdlc3RpdmUgb3JnYW5lbGxlLCBhbmQgdGhlIGZ1bmN0aW9uIG9mIHRoZSB2YWN1b2xlIGlzIHN0b3JhZ2Uu[Qq]
[c]IEx5c29zb21lLCByaWJvc29tZSwgdmFjdW9sZQ==[Qq]
[f]IE5vLiBUaGUgbHlzb3NvbWUgaXMgYSBkaWdlc3RpdmUgb3JnYW5lbGxlLCBhbmQgdGhlIGZ1bmN0aW9uIG9mIHRoZSB2YWN1b2xlIGlzIHN0b3JhZ2Uu[Qq]
[c]IFJpYm9zb21lLCByb3Vn aCBFUiwgc21vb3RoIEVS[Qq]
[f]IFBlcmZlY3QuIFRoZSByaWJvc29tZSBtYWtlcyBwcm90ZWluczsgdGhlIHJvdWdoIEVSIG1ha2VzIHByb3RlaW5zIHRoYXQgYXJlIGRlc2lnbmF0ZWQgZm9yIGV4cG9ydCwgdGhlIG1lbWJyYW5lLCBvciBseXNvc29tZXM7IHRoZSBzbW9vdGggRS5SLiBtYWtlcyBsaXBpZHMu[Qq]
[c]IFJpYm9zb21lLCBzbW9vdGggRVIuIHZhY3VvbGU=[Qq]
[f]IE5vLiBUaGUgdmFjdW9sZSBpcyBhIHN0b3JhZ2Ugb3JnYW5lbGxlLg==[Qq]
[c]IFJvdWdoIEVSLCBzbW9vdGggRVIsIHZhY3VvbGU=[Qq]
[f]IE5vLiBUaGUgdmFjdW9sZSBpcyBhIHN0b3JhZ2Ugb3JnYW5lbGxlLg==
Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 2 Cumulative Multiple Choice Quiz 2 (v2.0)|2236090bd21c33″ question_number=”7″ unit=”2.Cell Structure and Function” topic=”2.1-2.2.Cell Parts”] Which of the following pairs of statements correctly matches organelles to their function?
[c]IFRoZSBHb2xnaSBhcHBhcmF0dXMgaXMgd2hlcmUgQVRQIHByb2R1Y3Rpb24gb2NjdXJzLiBUaGUgcm91Z2ggZW5kb3BsYXNtaWMgcmV0aWN1bHVtIGlzIHdoZXJlIHByb3RlaW5zIGFyZSBzeW50aGVzaXplZCBmb3IgY2VsbCBzZWNyZXRpb24u[Qq]
[f]IE5vLiBUaGUgZnVuY3Rpb24gb2YgdGhlIHJvdWdoIEUuUi4gaXMgY29ycmVjdCwgYnV0IEFUUCBzeW50aGVzaXMgaGFwcGVucyBpbiB0aGUgbWl0b2Nob25kcmlhIChub3QgdGhlIEdvbGdpIGFwcGFyYXR1cyku[Qq]
[c]IFRoZSBHb2xnaSBhcHBhcmF0dXMgaXMgd2hlcmUgcHJvdGVpbnMgYXJlIHByb2Nlc3NlZC4gVGhlIHJvdWdoIGVuZG9wbGFzbWljIHJldGljdWx1bSBpcyB3aGVyZS Bwcm90ZWlucyBhcmUgc3ludGhlc2l6ZWQgZm9yIGNlbGwgc2VjcmV0aW9uIChvciBpbmNvcnBvcmF0aW9uIGludG8gbHlzb3NvbWVzIG9yIHRoZSBtZW1icmFuZSku[Qq]
[f]IFRoYXQmIzgyMTc7cyBjb3JyZWN0ISBHb29kIGpvYiBrbm93aW5nIHlvdXIgb3JnYW5lbGxlcyE=[Qq]
[c]IFRoZSBHb2xnaSBhcHBhcmF0dXMgaXMgd2hlcmUgcHJvdGVpbnMgYXJlIHN5bnRoZXNpemVkIGZvciBjZWxsIHNlY3JldGlvbi4gVGhlIHJvdWdoIGVuZG9wbGFzbWljIHJldGljdWx1bSBpcyB3aGVyZSBBVFAgcHJvZHVjdGlvbiBvY2N1cnMu[Qq]
[f]IE5vLiBTdHVkeSB0aGUgZGlhZ3JhbSBiZWxvdy4gVGhlIFJvdWdoIEUuUi4gaXMgYXQgQywgYW5kIG5vdGljZSBpdHMgYXNzb2NpYXRpb24gd2l0aCByaWJvc29tZXMgKEUpIGFuZCBwcm90ZWlucyAoRikuIFRoZSBHb2xnaSBpcyBhdCBELiBOb3RpY2UgdGhlIGxhY2sgb2Ygcmlib3NvbWVzLg==
Cg==Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” unit=”2.Cell Structure and Function” topic=”2.3.Cell_Size” dataset_id=”Unit 2 Cumulative Multiple Choice Quiz 2 (v2.0)|2235f417671833″ question_number=”8″] The shapes below represent three cells that contain the same volume of cytoplasm. Which of the following statements is true?
[c]IENlbGwgSSBoYXMgdGhlIGhpZ2hlc3Qgc3VyZmFjZSBhcmVhOnZvbHVtZSByYXRpbw==[Qq]
[f]IE5vLiBBIHNwaGVyZSBlbmNsb3NlcyB0aGUgbW9zdCB2b2x1bWUgZm9yIGEgZ2l2ZW4gc3VyZmFjZSBhcmVhLiBUaGF0IG1lYW5zIHRoYXQgdGhlIHNwaGVyZSB3b3VsZCBoYXZlIHRoZSA=bG93ZXN0IHJhdGlvIG9mIHN1cmZhY2UgYXJlYTp2b2x1bWUu[Qq]
[c]IENlbGwgSUkgaGFzIHRoZSBoaWdoZXN0IHN1cmZhY2UgYXJlYTp2b2x1bWUgcmF0aW8=[Qq]
[f]IE5vLiBUaGUgcm9kIHNob3duIGF0IElJIGhhcyBhIHN1cmZhY2UgYXJlYSB0byB2b2x1bWUgcmF0aW8gdGhhdCYjODIxNztzIGluIGJldHdlZW4gdGhhdCBvZiB0aGUgb3RoZXIgdHdvIGNlbGxzLg==[Qq]
[c]IENlbGwgSUlJIGhhcyB0aGUgaGlnaGVzdC BzdXJmYWNlIGFyZWE6dm9sdW1lIHJhdGlv[Qq]
[f]IEV4Y2VsbGVudC4gQSBsb25nIHRoaW4gb2JqZWN0IHN1Y2ggYXMgdGhlIGNlbGwgc2hvd24gYXQgSUlJIHdvdWxkIGhhdmUgdGhlIG1vc3Qgc3VyZmFjZSBhcmVhIHJlbGF0aXZlIHRvIGl0cyB2b2x1bWUu[Qq]
[c]IEFsbCB0aHJlZSBjZWxscyBoYXZlIHRoZSBzYW1lIHN1cmZhY2UgYXJlYTp2b2x1bWUgcmF0aW8=[Qq]
[f]IE5vLiBZb3UmIzgyMTc7cmUgdG9sZCBpbiB0aGUgc3RlbSBvZiB0aGUgcXVlc3Rpb24gdGhhdCB0aGUgdm9sdW1lIG9mIGFsbCB0aHJlZSBjZWxscyBpcyB0aGUgc2FtZS4gQ2VsbCBJIGhhcyB0aGUgbGVhc3Qgc3VyZmFjZSBhcmVhLCBhbmQgQ2VsbCBJSUkgaGFzIHRoZSBtb3N0LiBLbm93aW5nIHRoaW5nIHRoYXQsIGhvdyB3b3VsZCB0aGUgc3VyZmFjZSBhcmVhIHRvIHZvbHVtZSByYXRpbyBvZiB0aGUgdGhyZWUgY2VsbHMgY29tcGFyZT8=
Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” unit=”2.Cell Structure and Function” topic=”2.3.Cell_Size” dataset_id=”Unit 2 Cumulative Multiple Choice Quiz 2 (v2.0)|2235da7ae44c33″ question_number=”9″] A cubical cell containing a volume of 1 μm3 measures 1 μm on each side. If the length of each side doubles, which of the following will be true?
[c]IFRoZSB2b2x1bWUgd2lsbCBkb3VibGU=[Qq]
[f]IE5vLiBBcyBhIGN1YmUgZ2V0cyBsYXJnZXIsIHRoZSBzdXJmYWNlIGFyZWEgZ29lcyB1cCBieSA2eCB0aGUgc3F1YXJlIG9mIGEgc2lkZSB3aGlsZSB0aGUgdm9sdW1lIGdvZXMgdXAgYnkgdGhlIGN1YmUgb2YgYSBzaWRlLiBUaGUgY2VsbCBkZXNjcmliZWQgd2lsbCBnbyBmcm9tIGEgdm9sdW1lIG9mIDEgdG8gOCwgd2hpY2ggaXMgYSBmYWN0b3Igb2YgOCwgd2hpbGUgdGhlIHN1cmZhY2Ugd2lsbCBnbyBmcm9tIDYgdG8gMjQsIHdoaWNoIGlzIGEgZmFjdG9yIG9mIG9ubHkgNC7CoCBUaGlzIGFuc3dlciBpcyBpbmNvcnJlY3QgYmVjYXVzZSBpbmNyZWFzaW5nIHRoZSBsZW5ndGggb2YgYSBzaWRlIGJ5IDIgd2lsbCBpbmNyZWFzZSB0aGUgdm9sdW1lIGJ5IGEgZmFjdG9yIG9mIDI=Mw==ICg4KS4=
Cg==[Qq]
[c]IFRoZSBzdXJmYWNlIGFyZWEgd2lsbCBkb3VibGU=[Qq]
[f]IE5vLiBBcyBhIGN1YmUgZ2V0cyBsYXJnZXIsIHRoZSBzdXJmYWNlIGFyZWEgZ29lcyB1cCBieSA2eCB0aGUgc3F1YXJlIG9mIGEgc2lkZSB3aGlsZSB0aGUgdm9sdW1lIGdvZXMgdXAgYnkgdGhlIGN1YmUgb2YgYSBzaWRlLsKgIFRoZSBjZWxsIGRlc2NyaWJlZCB3aWxsIGdvIGZyb20gYSB2b2x1bWUgb2YgMSB0byA4LCB3aGljaCBpcyBhIGZhY3RvciBvZiA4LCB3aGlsZSB0aGUgc3VyZmFjZSB3aWxsIGdvIGZyb20gNiB0byAyNCwgd2hpY2ggaXMgYSBmYWN0b3Igb2Ygb25seSA0LsKgIFRoaXMgYW5zd2VyIGlzIGluY29ycmVjdCBiZWNhdXNlIHRoZSB2b2x1bWUgaW5jcmVhc2VzIGJ5IHRoZSBjdWJlIG9mIGEgc2lkZSB3aGlsZSB0aGUgc3VyZmFjZSBhcmVhIGluY3JlYXNlcyBieSA2IHggdGhlIGxlbmd0aCBzcXVhcmVkLg==
Cg==[Qq]
[c]IFRoZSBzdXJmYWNlIGFyZWEgd2lsbCBpbmNyZWFzZSBtb3JlIHRoYW4gdGhlIHZvbHVtZS4=[Qq]
[f]IE5vLiBBcyBhIGN1YmUgZ2V0cyBsYXJnZXIsIHRoZSBzdXJmYWNlIGFyZWEgZ29lcyB1cCBieSA2eCB0aGUgc3F1YXJlIG9mIGEgc2lkZSB3aGlsZSB0aGUgdm9sdW1lIGdvZXMgdXAgYnkgdGhlIGN1YmUgb2YgYSBzaWRlLsKgIFRoZSBjZWxsIGRlc2NyaWJlZCB3aWxsIGdvIGZyb20gYSB2b2x1bWUgb2YgMSB0byA4LCB3aGljaCBpcyBhIGZhY3RvciBvZiA4LCB3aGlsZSB0aGUgc3VyZmFjZSB3aWxsIGdvIGZyb20gNiB0byAyNCwgd2hpY2ggaXMgYSBmYWN0b3Igb2Ygb25seSA0LsKgIFRoaXMgYW5zd2VyIGlzIGluY29ycmVjdCBiZWNhdXNlIGl0IGlzIHRoZSBvcHBvc2l0ZSBvZiB3aGF0IG11c3QgaGFwcGVuLg==
Cg==[Qq]
[c]IFRoZSB2b2x1bWUgd2lsbCBpbmNyZWFzZSBt b3JlIHRoYW4gdGhlIHN1cmZhY2UgYXJlYS4=[Qq]
[f]IFdheSB0byBnby4gQXMgYSBjdWJlIGdldHMgbGFyZ2VyLCB0aGUgc3VyZmFjZSBhcmVhIGdvZXMgdXAgYnkgNnggdGhlIHNxdWFyZSBvZiBhIHNpZGUgd2hpbGUgdGhlIHZvbHVtZSBnb2VzIHVwIGJ5IHRoZSBjdWJlIG9mIGEgc2lkZS7CoCBUaGUgY2VsbCBkZXNjcmliZWQgd2lsbCBnbyBmcm9tIGEgdm9sdW1lIG9mIDEgdG8gOCwgd2hpY2ggaXMgYSBmYWN0b3Igb2YgOCwgd2hpbGUgdGhlIHN1cmZhY2Ugd2lsbCBnbyBmcm9tIDYgdG8gMjQsIHdoaWNoIGlzIGEgZmFjdG9yIG9mIG9ubHkgNC4=
Cg==Cg==[Qq]
[q json=”true” multiple_choice=”true” unit=”2.Cell Structure and Function” topic=”2.4.Plasma_Membranes” dataset_id=”Unit 2 Cumulative Multiple Choice Quiz 2 (v2.0)|22359df1af2433″ question_number=”10″] In the diagram below, which membrane component would be involved in facilitated diffusion?
[c]IEEg[Qq][c]IEIg[Qq][c]IE Mg[Qq][c]IEQg[Qq][c]IEU=
Cg==[Qq][f]IE5vLiAmIzgyMjA7QSYjODIyMTsgaXMgcG9pbnRpbmcgdG8gc2hvcnQgcG9seXNhY2NoYXJpZGVzIChvbGlnb3NhY2NoYXJpZGVzKSB0aGF0IGFyZSBhdHRhY2hlZCB0byBsaXBpZHMgb3IgcHJvdGVpbnMuIE9saWdvc2FjY2hhcmlkZXMgYXJlIGludm9sdmVkIGluIGNlbGwgcmVjb2duaXRpb24uIEhlcmUmIzgyMTc7cyBhIGhpbnQ6IHlvdSYjODIxNztyZSBsb29raW5nIGZvciBhIG1lbWJyYW5lIGNvbXBvbmVudCB0aGF0IGNvdWxkIGFjdCBhcyBhIGNoYW5uZWwgb3IgYSBwb3JlIHRocm91Z2ggd2hpY2ggbW9sZWN1bGVzIGNvdWxkIGRpZmZ1c2UgaW50byBvciBvdXQgb2YgdGhlIGNlbGwuIFdoYXQgbG9va3MgbGlrZSBhIGNoYW5uZWwgb3IgYSBwb3JlPw==[Qq]
[f]IE5vLiAmIzgyMjA7QiYjODIyMTsgaXMgcG9pbnRpbmcgdG8gY2hvbGVzdGVyb2wsIHdoaWNoIGFjdHMgdG8gbWFpbnRhaW4gdGhlIHByb3BlciBsZXZlbCBvZiBtZW1icmFuZSBmbHVpZGl0eS4gSGVyZSYjODIxNztzIGEgaGludDogeW91JiM4MjE3O3JlIGxvb2tpbmcgZm9yIGEgbWVtYnJhbmUgY29tcG9uZW50IHRoYXQgY291bGQgYWN0IGFzIGEgY2hhbm5lbCBvciBhIHBvcmUgdGhyb3VnaCB3aGljaCBtb2xlY3VsZXMgY291bGQgZGlmZnVzZSBpbnRvIG9yIG91dCBvZiB0aGUgY2VsbC4gV2hhdCBsb29rcyBsaWtlIGEgY2hhbm5lbCBvciBhIHBvcmU/[Qq]
[f]IEdvb2Qgam9iLiAmIzgyMjA7QyYjODIyMTsgaXMgcG9pbnRpbmcgdG8gYSBjaGFubmVsIHByb3RlaW4u[Qq]
[f]IE5vLiAmIzgyMjA7RCYjODIyMTsgaXMgcG9pbnRpbmcgdG8gYSBwaG9zcGhvbGlwaWQuIFBob3NwaG9saXBpZHMgZm9ybSB0aGUgcGhvc3Bob2xpcGlkIGJpbGF5ZXIsIHRoZSBrZXkgc3RydWN0dXJhbCBjb21wb25lbnQgb2YgdGhlIG1lbWJyYW5lLiBIZXJlJiM4MjE3O3MgYSBoaW50OiB5b3UmIzgyMTc7cmUgbG9va2luZyBmb3IgYSBtZW1icmFuZSBjb21wb25lbnQgdGhhdCBjb3VsZCBhY3QgYXMgYSBjaGFubmVsIG9yIGEgcG9yZSB0aHJvdWdoIHdoaWNoIG1vbGVjdWxlcyBjb3VsZCBkaWZmdXNlIGludG8gb3Igb3V0IG9mIHRoZSBjZWxsLiBXaGF0IGxvb2tzIGxpa2UgYSBjaGFubmVsIG9yIGEgcG9yZT8=[Qq]
[f]IE5vLiAmIzgyMjA7RSYjODIyMTsgaXMgcG9pbnRpbmcgdG8gYSBtZW1icmFuZSBwcm90ZWluLiBNZW1icmFuZSBwcm90ZWlucyBsaWtlICYjODIyMDtFJiM4MjIxOyBjYW4gYWN0IGFzIG1lbWJyYW5lLWVtYmVkZGVkIGVuenltZXMgb3IgYXR0YWNobWVudCBwb2ludHMgZm9yIHRoZSBjeXRvc2tlbGV0b24uIEhlcmUmIzgyMTc7cyBhIGhpbnQ6IHlvdSYjODIxNztyZSBsb29raW5nIGZvciBhIG1lbWJyYW5lIGNvbXBvbmVudCB0aGF0IGNvdWxkIGFjdCBhcyBhIGNoYW5uZWwgb3IgYSBwb3JlIHRocm91Z2ggd2hpY2ggbW9sZWN1bGVzIGNvdWxkIGRpZmZ1c2UgaW50byBvciBvdXQgb2YgdGhlIGNlbGwuIFdoYXQgbG9va3MgbGlrZSBhIGNoYW5uZWwgb3IgYSBwb3JlPw==
Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 2 Cumulative Multiple Choice Quiz 2 (v2.0)|22357fad149033″ question_number=”11″ unit=”2.Cell Structure and Function” topic=”2.4.Plasma_Membranes”] Which of the following models best represents the arrangement of phospholipids in a cell membrane?
[c]IE Eg[Qq][c]IEIg[Qq][c]IEMg[Qq][c]IEQ=
Cg==[Qq][f]IEV4YWN0bHkuIEJlY2F1c2UgcGhvc3Bob2xpcGlkcyBoYXZlIGEgaHlkcm9waG9iaWMgdGFpbCBhbmQgYSBoeWRyb3BoaWxpYyBoZWFkLCB0aGUgbG93ZXN0IGVuZXJneSBzdGF0ZSB0aGF0IHRoZXkgY2FuIGFzc3VtZSBpcyB0aGUgb25lIHNob3duIGluIEEgYWJvdmUsIHdpdGggdGhlIGhlYWRzIHBvaW50aW5nIG91dCAoaW50ZXJhY3Rpbmcgd2l0aCB3YXRlciBpbiB0aGUgY2VsbCBleHRlcmlvciBhbmQgdGhlIGN5dG9wbGFzbSkgYW5kIHRoZSB0YWlscyBjbHVzdGVyaW5nIHRvZ2V0aGVyIGluIGEgd2F0ZXItZnJlZSB6b25lLg==
Cg==SGVyZSYjODIxNztzIGhvdyBJIGRlc2NyaWJlIHRoaXMgaW4gbXkgTWVtYnJhbmVzISBSYXA6
Cg==[Qq]Cause when phospholipids into water get submerged,
A phospholipid bilayer structure will emerge
The tails hang together in a water-free zone,
Hear their hydrophobic moan, “Water leave me alone!”
While the heads are sticking out touching all those H2Os
Tails in heads out, it’s how every membrane goes
Tails in, heads out, in a cellular sphere,
It’s the bilayered basis of membranes everywhere.
[f]IE5vLiBSZW1lbWJlciB0aGF0IGZvciBtb3N0IGNlbGxzLCBhYm92ZSBhbmQgYmVsb3cgdGhlIG1lbWJyYW5lIGFyZSBzb2x1dGlvbnMgdGhhdCBhcmUgbW9zdGx5IHdhdGVyICh0aGUgY2VsbCBleHRlcmlvciwgYW5kIHRoZSBjeXRvc29sKS4gUmVhZCB0aGVzZSBseXJpY3MgZnJvbSBteSBNZW1icmFuZXMhIFJhcCwgYW5kIHNlZSBpZiB5b3UgY2FuIGZpZ3VyZSBvdXQgdGhlIGNvcnJlY3QgYXJyYW5nZW1lbnQ6
Cg==Q2F1c2Ugd2hlbiBwaG9zcGhvbGlwaWRzIGludG8gd2F0ZXIgZ2V0IHN1Ym1lcmdlZCw=[Qq]
A phospholipid bilayer structure will emerge
The tails hang together in a water-free zone,
Hear their hydrophobic moan, “Water leave me alone!”
While the heads are sticking out touching all those H2Os
Tails in heads out, it’s how every membrane goes
Tails in, heads out, in a cellular sphere,
It’s the bilayered basis of membranes everywhere.
[f]IE5vLiBSZW1lbWJlciB0aGF0IGZvciBtb3N0IGNlbGxzLCBhYm92ZSBhbmQgYmVsb3cgdGhlIG1lbWJyYW5lIGFyZSBzb2x1dGlvbnMgdGhhdCBhcmUgbW9zdGx5IHdhdGVyICh0aGUgY2VsbCBleHRlcmlvciwgYW5kIHRoZSBjeXRvc29sKS4gUmVhZCB0aGVzZSBseXJpY3MgZnJvbSBteSBNZW1icmFuZXMhIFJhcCwgYW5kIHNlZSBpZiB5b3UgY2FuIGZpZ3VyZSBvdXQgdGhlIGNvcnJlY3QgYXJyYW5nZW1lbnQ6
Cg==Q2F1c2Ugd2hlbiBwaG9zcGhvbGlwaWRzIGludG8gd2F0ZXIgZ2V0IHN1Ym1lcmdlZCw=[Qq]
A phospholipid bilayer structure will emerge
The tails hang together in a water-free zone,
Hear their hydrophobic moan, “Water leave me alone!”
While the heads are sticking out touching all those H2Os
Tails in heads out, it’s how every membrane goes
Tails in, heads out, in a cellular sphere,
It’s the bilayered basis of membranes everywhere.
[f]IE5vLiBSZW1lbWJlciB0aGF0IGZvciBtb3N0IGNlbGxzLCBhYm92ZSBhbmQgYmVsb3cgdGhlIG1lbWJyYW5lIGFyZSBzb2x1dGlvbnMgdGhhdCBhcmUgbW9zdGx5IHdhdGVyICh0aGUgY2VsbCBleHRlcmlvciwgYW5kIHRoZSBjeXRvc29sKS4gUmVhZCB0aGVzZSBseXJpY3MgZnJvbSBteSBNZW1icmFuZXMhIFJhcCwgYW5kIHNlZSBpZiB5b3UgY2FuIGZpZ3VyZSBvdXQgdGhlIGNvcnJlY3QgYXJyYW5nZW1lbnQ6
Cg==Q2F1c2Ugd2hlbiBwaG9zcGhvbGlwaWRzIGludG8gd2F0ZXIgZ2V0IHN1Ym1lcmdlZCw=[Qq]
A phospholipid bilayer structure will emerge
The tails hang together in a water-free zone,
Hear their hydrophobic moan, “Water leave me alone!”
While the heads are sticking out touching all those H2Os
Tails in heads out, it’s how every membrane goes
Tails in, heads out, in a cellular sphere,
It’s the bilayered basis of membranes everywhere.
[q json=”true” multiple_choice=”true” unit=”2.Cell Structure and Function” topic=”2.5.Membrane_Permeability” dataset_id=”Unit 2 Cumulative Multiple Choice Quiz 2 (v2.0)|223568649da833″ question_number=”12″] During digestion, proteins are broken down into amino acids, four of which are shown below.
Amino acids diffuse slowly through artificial phospholipid bilayers, like the one shown below.
However, within an animal’s body, amino acids can rapidly move from the inside of the intestine, through the cells lining the intestine, through the cells lining the capillaries of the bloodstream, and into the blood. What process explains this movement of amino acids?
[c]IGFjdGl2ZSB0cmFuc3BvcnQ=[Qq]
[f]IE5vLiBBcyBwcm90ZWlucyBhcmUgYnJva2VuIGRvd24gaW50byBhbWlubyBhY2lkcywgdGhlc2UgYW1pbm8gYWNpZHMgY29tZSB0byBiZSBtb3JlIGNvbmNlbnRyYXRlZCBpbiB0aGUgaW50ZXN0aW5lIHRoYW4gaW4gdGhlIGNlbGxzIGxpbmluZyB0aGUgaW50ZXN0aW5lLiBBcyBhIHJlc3VsdCwgYWN0aXZlIHRyYW5zcG9ydCAod2hpY2ggbW92ZXMgc3Vic3RhbmNlcyB1cCBhIGNvbmNlbnRyYXRpb24gZ3JhZGllbnQpIGlzIG5vdCByZXF1aXJlZC4gSGVyZSYjODIxNztzIGEgaGludDogaG93IHdvdWxkIGNoYXJnZWQgcGFydGljbGVzIHN1Y2ggYXMgYW1pbm8gYWNpZHMgYmUgYWJsZSB0byBjcm9zcyBhIGNlbGwgbWVtYnJhbmU/[Qq]
[c]IHNpbXBsZSBkaWZmdXNpb24=[Qq]
[f]IE5vLiBDaGFyZ2VkIHN1YnN0YW5jZXMgbGlrZSBhbWlubyBhY2lkcyBjYW4mIzgyMTc7dCBmcmVlbHkgZGlmZnVzZSBhY3Jvc3MgYSBwaG9zcGhvbGlwaWQgYmlsYXllci4gSGVyZSYjODIxNztzIGEgaGludDogd2hhdCBtZW1icmFuZSBjb21wb25lbnQgY291bGQgc2VydmUgYXMgYSB3YXkgZm9yIGFtaW5vIGFjaWRzIHRvIGVudGVyIGEgY2VsbD8=
Cg==[Qq]
[c]IGZhY2lsaXRhdGVk IGRpZmZ1c2lvbg==[Qq]
[f]IEF3ZXNvbWUhIEZvciBhIGNoYXJnZWQgc3Vic3RhbmNlIGxpa2UgYW4gYW1pbm8gYWNpZCB0byBlbnRlciBhIGNlbGwsIHRoZXkmIzgyMTc7ZCBuZWVkIHRoZWlyIHBhc3NhZ2UgdG8gYmUgZmFjaWxpdGF0ZWQgYnkgY2hhbm5lbCBwcm90ZWluLiBUaGlzIHR5cGUgb2YgcGFzc2FnZSBpcyBjYWxsZWQgZmFjaWxpdGF0ZWQgZGlmZnVzaW9uLg==[Qq]
[c]IGV4b2N5dG9zaXM=[Qq]
[f]IE5vLiBFeG9jeXRvc2lzIG1vdmVzIHN1YnN0YW5jZXMgb3V0IG9mIGEgY2VsbC4gSGVyZSYjODIxNztzIGEgaGludCBmb3IgdGhlIG5leHQgdGltZSB5b3Ugc2VlIHRoaXMgcXVlc3Rpb24uIENoYXJnZWQgc3Vic3RhbmNlcyBsaWtlIGFtaW5vIGFjaWRzIGNhbiYjODIxNzt0IGZyZWVseSBkaWZmdXNlIGFjcm9zcyBhIHBob3NwaG9saXBpZCBiaWxheWVyLiBXaGF0IG1lbWJyYW5lIGNvbXBvbmVudCBjb3VsZCBzZXJ2ZSBhcyBhIHdheSBmb3IgYW1pbm8gYWNpZHMgdG8gZW50ZXIgYSBjZWxsPw==
Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 2 Cumulative Multiple Choice Quiz 2 (v2.0)|2235511c26c033″ question_number=”13″ unit=”2.Cell Structure and Function” topic=”2.5.Membrane_Permeability”] In human lungs, the respiratory cycle involves an inhalation followed by an exhalation. In this type of system, the lungs are never entirely flushed with fresh air. As a result, the oxygen concentration in human lungs is about 56% that of the outside air.
In sparrows and other birds, the lungs maintain a one-way flow of air using a series of air sacs. As a result, a sparrow’s lungs can be entirely flushed with fresh air.
A sparrow can obtain more oxygen from outside air than a human can because the sparrow’s gas exchange system has
[c]IGEgbGFyZ2VyIGRpZmZ1c2lvbiBhcmVhLg==[Qq]
[f]IE5vLiBUaGUgZGlmZnVzaW9uIGFyZWEgaXMgYSBmdW5jdGlvbiBvZiBtYW55IGZhY3RvcnMsIGJ1dCBhIG1ham9yIG9uZSBpcyB0aGUgc2l6ZSBvZiB0aGUgb3JnYW5pc20uIEh1bWFucyBoYXZlIGEgbGFyZ2VyIGRpZmZ1c2lvbiBhcmVhIHRoYW4gc3BhcnJvd3MgZG8u[Qq]
[c]IGEgc21hbGxlciBkaWZmdXNpb24gZGlzdGFuY2Uu[Qq]
[f]IE5vLiBJbiBib3RoIHNwZWNpZXMsIG94eWdlbiBkaWZmdXNlcyBhIHNob3J0IGRpc3RhbmNlIGZyb20gdGhlIGFsdmVvbGkgYW5kIG90aGVyIGFpciBzYWNzIHRvIG5lYXJieSBjYXBpbGxhcmllcy4=[Qq]
[c]IGxlc3Mgb2YgYSBkaWZmdXNpb24gYmFycmllci4=[Qq]
[f]IE5vLiBJbiBib3RoIHNwZWNpZXMsIG94eWdlbiBkaWZmdXNlcyBhY3Jvc3MgYSB0aGluIGVwaXRoZWxpYWwgbGF5ZXIgYW5kIHRoZW4gaW50byB0aGluLXdhbGxlZCBjYXBpbGxhcmllcyB0aGF0IGJyaW5nIG94eWdlbmF0ZWQgYmxvb2QgaW50byB0aGUgY2lyY3VsYXRvcnkgc3lzdGVtLg==[Qq]
[c]IGEgc3RlZXBlciBkaWZm dXNpb24gZ3JhZGllbnQu[Qq]
[f]IFllcy4gVGhlIHN5c3RlbSB0aGF0IGhhcyBldm9sdmVkIGluIGJpcmRzIHByb3ZpZGVzIGZvciBhIHN0ZWVwZXIgZGlmZnVzaW9uIGdyYWRpZW50LCBhbGxvd2luZyBiaXJkcyB0byBhYnNvcmIgbW9yZSBveHlnZW4gaW50byB0aGVpciBibG9vZCB0aGFuIG1hbW1hbHMgY2FuOiBhbiBlc3NlbnRpYWwgYWRhcHRhdGlvbiBmb3IgdGhlIGhpZ2ggZW5lcmd5IGRlbWFuZHMgYXNzb2NpYXRlZCB3aXRoIGZseWluZy4=
Cg==[Qq]
[q json=”true” multiple_choice=”true” unit=”2.Cell Structure and Function” topic=”2.6-7,_2.9.Membrane_Transport” dataset_id=”Unit 2 Cumulative Multiple Choice Quiz 2 (v2.0)|22353c27bbbc33″ question_number=”14″] Glucose is a monosaccharide. Its structural formula is shown below.
By which of the pathways below would glucose diffuse through a cell’s membrane?
[c]IDEg[Qq][c]ID Ig[Qq][c]IDM=
Cg==[Qq][f]IE5vLiBQYXRod2F5ICYjODIyMDsxJiM4MjIxOyBzaG93cyBkaWZmdXNpb24gdGhyb3VnaCB0aGUgY2VsbCYjODIxNztzIHBob3NwaG9saXBpZCBiaWxheWVyLiBUaGF0IHdvdWxkbiYjODIxNzt0IHdvcmsgZm9yIGdsdWNvc2UsIGJlY2F1c2UgYWxsIHRoZSDigJRPSCBmdW5jdGlvbmFsIGdyb3VwcyBvbiBnbHVjb3NlIG1ha2UgaXQgcG9sYXIuIFBvbGFyIG1vbGVjdWxlcyBjYW4mIzgyMTc7dCBkaWZmdXNlIHRocm91Z2ggdGhlIHBob3NwaG9saXBpZCBiaWxheWVyLiBOZXh0IHRpbWUsIGxvb2sgZm9yIHRoZSBwYXRod2F5IHRoYXQgc2hvd3MgZmFjaWxpdGF0ZWQgZGlmZnVzaW9uLg==[Qq]
[f]IE5pY2UhIEdsdWNvc2UgaXMgYSBwb2xhciBtb2xlY3VsZSwgYW5kIGNhbiBvbmx5IGRpZmZ1c2UgdGhyb3VnaCB0aGUgY2VsbCBtZW1icmFuZSBieSBmYWNpbGl0YXRlZCBkaWZmdXNpb24gdGhyb3VnaCBhIHByb3RlaW4gY2hhbm5lbCAoYXMgc2hvd24gaW4gJiM4MjIwOzImIzgyMjE7KS4=[Qq]
[f]IE5vLiBOb3RpY2UgaG93IHRoZSBzdWJzdGFuY2UgcGFzc2luZyB0aHJvdWdoIHRoZSBtZW1icmFuZSBhdCAmIzgyMjA7MyYjODIyMTsgaXMgbW92aW5nIGZyb20gbG93ZXIgY29uY2VudHJhdGlvbiB0byBoaWdoZXIgY29uY2VudHJhdGlvbi4gVGhhdCYjODIxNztzIGFjdGl2ZSB0cmFuc3BvcnQuIE5leHQgdGltZSwgbG9vayBmb3IgdGhlIHBhdGh3YXkgdGhhdCBzaG93cyBmYWNpbGl0YXRlZCBkaWZmdXNpb24u
Cg==[Qq]
[q json=”true” multiple_choice=”true” unit=”2.Cell Structure and Function” topic=”2.6-7,_2.9.Membrane_Transport” dataset_id=”Unit 2 Cumulative Multiple Choice Quiz 2 (v2.0)|223524df44d433″ question_number=”15″] A student sketches three forms of transport through the cell membrane. When the sketch is evaluated, the teacher comments that the representation of active transport is incomplete or incorrect.
Which of the following correctly identifies active transport, and explains why the sketch is incomplete or incorrect?
[c]ICYjODIyMDszJiM4MjIxOyByZXByZXNlbnRzIGFjdGl2ZSB0cmFuc3BvcnQuIEl0JiM4MjE3O3MgaW5jb3JyZWN0IGJlY2F1c2UgYWN0aXZlIHRyYW5zcG9ydCBvbmx5IG1vdmVzIG1hdGVyaWFsIG91dCBvZiB0aGUgY2VsbC4=[Qq]
[f]IE5vLiBZb3UmIzgyMTc7cmUgcmlnaHQgaW5zb2ZhciBhcyAmIzgyMjA7MyYjODIyMTsgaXMgYWN0aXZlIHRyYW5zcG9ydCwgYnV0IHlvdSYjODIxNztyZSB3cm9uZyBhYm91dCB0aGUgcmVhc29uLg==[Qq]
[c]ICYjODIyMDsyJiM4MjIxOyByZXByZXNlbnRzIGFjdGl2ZSB0cmFuc3BvcnQuIEl0JiM4MjE3O3MgaW5jb21wbGV0ZSBiZWNhdXNlIGl0IGxhY2tzIGFuIGVuZXJneSBzb3VyY2Uu[Qq]
[f]IE5vLsKgICYjODIyMDsyJiM4MjIxOyBzaG93cyBhIHN1YnN0YW5jZSBkaWZmdXNpbmcgZnJvbSBoaWdoZXIgdG8gbG93ZXIgY29uY2VudHJhdGlvbi4gVGhhdCYjODIxNztzIGRpZmZ1c2lvbiwgbm90IGFjdGl2ZSB0cmFuc3BvcnQu[Qq]
[c]ICYjODIyMDszJiM4MjIxOyByZXByZXNlbnRzIGFjdGl2ZSB0cmFuc3BvcnQuIEl0JiM4MjE3O3MgaW 5jb21wbGV0ZSBiZWNhdXNlIGl0IGxhY2tzIGNvbnZlcnNpb24gb2YgQVRQIHRvIEFEUCBhbmQgUA==aQ==Lg==[Qq]
[f]IEdvb2Qgam9iLiAmIzgyMjA7MyYjODIyMTsgaXMgaW5kZWVkIGFjdGl2ZSB0cmFuc3BvcnQuIEEgYmV0dGVyIHJlcHJlc2VudGF0aW9uIHdvdWxkIGJlIHRoZSBvbmUgc2hvd24gYmVsb3cu
Cg==[Qq]
[c]ICYjODIyMDsyJiM4MjIxOyByZXByZXNlbnRzIGFjdGl2ZSB0cmFuc3BvcnQuIEl0JiM4MjE3O3MgaW5jb3JyZWN0IGJlY2F1c2UgdGhlIGFycm93IGlzIHBvaW50aW5nIGluIHRoZSB3cm9uZyBkaXJlY3Rpb24u[Qq]
[f]IE5vLsKgICYjODIyMDsyJiM4MjIxOyBzaG93cyBmYWNpbGl0YXRlZCBkaWZmdXNpb24uIElmIHRoZSBhcnJvdyB3ZXJlIHBvaW50aW5nIGluIHRoZSBvcHBvc2l0ZSBkaXJlY3Rpb24sIHRoaXMgd291bGQgYmUgY2xvc2VyIHRvIGFjdGl2ZSB0cmFuc3BvcnQuIEhvd2V2ZXIsIGFjdGl2ZSB0cmFuc3BvcnQgYWxzbyByZXF1aXJlcyBhbiBlbmVyZ3kgc291cmNlLg==[Qq]
[c]ICYjODIyMDsxJiM4MjIxOyByZXByZXNlbnRzIGFjdGl2ZSB0cmFuc3BvcnQuIEl0JiM4MjE3O3MgaW5jb3JyZWN0IGJlY2F1c2UgaXQgbGFja3MgYSBwcm90ZWluIGNoYW5uZWwu[Qq]
[f]IE5vLiAmIzgyMjA7MSYjODIyMTsgc2hvd3Mgc2ltcGxlIGRpZmZ1c2lvbi4gQWN0aXZlIHRyYW5zcG9ydCByZXF1aXJlcyBhIHN1YnN0YW5jZSB0byBiZSBtb3ZlZCB1cCBhIGNvbmNlbnRyYXRpb24gZ3JhZGllbnQsIHRocm91Z2ggYSBwcm90ZWluIGNoYW5uZWwsIHdpdGggZXhwZW5kaXR1cmUgb2YgY2VsbHVsYXIgZW5lcmd5ICh1c3VhbGx5IGluIHRoZSBmb3JtIG9mIGNvbnZlcnNpb24gb2YgQVRQIHRvIEFEUCBhbmQgUA==aQ==KS4=
Cg==[Qq]
[q json=”true” xyz=”2″ xx=”3″ multiple_choice=”true” dataset_id=”Unit 2 Cumulative Multiple Choice Quiz 2 (v2.0)|22350b42c20833″ question_number=”16″ unit=”2.Cell Structure and Function” topic=”2.8.Tonicity_and_Osmoregulation”] Amoebas are unicellular protists that live in aquatic environments. A photomicrograph of one is shown immediately below.
The images that follow are simplified representations of amoebas, showing only the membrane and the nucleus. The letters X, Y, and Z represent the amoeba’s environment. Environment X is the amoeba’s natural environment, while environments Y and Z have been experimentally manipulated.
The most likely explanation for what’s happening to the amoeba in environment Z is that
[c]IHdhdGVyIGlzIGZsb3dpbmcgZnJvbSB0aGUgaHlwb3RvbmljIGVudmlyb25tZW50IG91dHNpZGUgb2YgdGhlIGFtb2ViYSBpbn RvIHRoZSBhbW9lYmEmIzgyMTc7cyBoeXBlcnRvbmljIGN5dG9wbGFzbSwgY2F1c2luZyB0aGUgYW1vZWJhIHRvIGV4cGFuZC4=[Qq]
[f]IEV4YWN0bHkuIFdhdGVyIGFsd2F5cyBmbG93cyBmcm9tIGh5cG90b25pYyB0byBoeXBlcnRvbmljLCBhbmQgdGhhdCBmbG93IG9mIHdhdGVyIGludG8gdGhlIGFtb2ViYSBoYXMgY2F1c2VkIHRoZSBhbW9lYmEgdG8gZXhwYW5kLg==[Qq]
[c]IHdhdGVyIGlzIGZsb3dpbmcgZnJvbSB0aGUgaHlwZXJ0b25pYyBlbnZpcm9ubWVudCBvdXRzaWRlIG9mIHRoZSBhbW9lYmEgaW50byB0aGUgYW1vZWJhJiM4MjE3O3MgaHlwb3RvbmljIGN5dG9wbGFzbS4=[Qq]
[f]IE5vLiBJZiB0aGUgYW1vZWJhIGlzIGV4cGFuZGluZywgdGhlbiB3YXRlciBtdXN0IGJlIGZsb3dpbmcgaW50byBpdC4gUmVtZW1iZXIgdGhhdCB3YXRlciBhbHdheXMgZmxvd3MgZnJvbSBoeXBvdG9uaWMgKGhpZ2hlciBjb25jZW50cmF0aW9uIG9mIHdhdGVyLCBsb3dlciBjb25jZW50cmF0aW9uIG9mIHNvbHV0ZXMpIHRvIGh5cGVydG9uaWMgKGxvd2VyIGNvbmNlbnRyYXRpb24gb2Ygd2F0ZXIsIGhpZ2hlciBjb25jZW50cmF0aW9uIG9mIHNvbHV0ZXMpLg==[Qq]
[c]IHNvbHV0ZXMsIGluY2x1ZGluZyBzYWx0IGFuZCBnbHVjb3NlLCBhcmUgZGlmZnVzaW5nIHRocm91Z2ggdGhlIGFtb2ViYSYjODIxNztzIG1lbWJyYW5lIGludG8gdGhlIGFtb2ViYSYjODIxNztzIGN5dG9wbGFzbS4=[Qq]
[f]IE5vLiBXaGlsZSBzb2x1dGVzIChzYWx0LCBnbHVjb3NlKSBhcmUgZ29pbmcgdG8gZGlmZnVzZSBkb3duIHRoZWlyIGNvbmNlbnRyYXRpb24gZ3JhZGllbnQsIHRoZSBpbmNyZWFzZSBpbiB0aGUgY2VsbCYjODIxNztzIHNpemUgaXMgZ29pbmcgdG8gcmVzdWx0IGZyb20gb3Ntb3Npcy4gTmV4dCB0aW1lLCBjaG9vc2UgYW4gYW5zd2VyIHRoYXQgZm9jdXNlcyBvbiB0aGUgbW92ZW1lbnQgb2Ygd2F0ZXIsIG5vdCB0aGUgc29sdXRlcy4=[Qq]
[c]IGFjdGl2ZSB0cmFuc3BvcnQgcHVtcHMgYXJlIG1vdmluZyB3YXRlciBmcm9tIHRoZSBoeXBlcnRvbmljIGNlbGwgZXh0ZXJpb3IgaW50byB0aGUgaHlwb3RvbmljIGNlbGwgaW50ZXJpb3Iu[Qq]
[f]IE5vLiBUaGUgcHVtcHMgaW52b2x2ZWQgaW4gYWN0aXZlIHRyYW5zcG9ydCBwdW1wIHNvbHV0ZXMsIG5vdCB3YXRlci4gVGhpcyBxdWVzdGlvbiBpcyBhYm91dCBvc21vc2lzLCBhbmQgdGhlIGtleSB0aGluZyB0byByZW1lbWJlciBpcyB0aGF0IHdhdGVyIGFsd2F5cyBmbG93cyBmcm9tIGh5cG90b25pYyB0byBoeXBlcnRvbmljLiBXaXRoIHRoYXQgaW4gbWluZCwgYXNrIHlvdXJzZWxmLCB3aGF0IGNvdWxkIGhhdmUgY2F1c2VkIHRoZSBjZWxsIGF0IFogdG8gZXhwYW5kPw==
Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 2 Cumulative Multiple Choice Quiz 2 (v2.0)|2234ef52335833″ question_number=”17″ unit=”2.Cell Structure and Function” topic=”2.8.Tonicity_and_Osmoregulation”] The figures below depict a plant cell before and after it was placed in a sucrose solution. Which of the following conclusions is most consistent with the changes observed in the plant cell after it was placed in this solution?
[c]IFdhdGVyIG1vbGVjdWxlcyBtb3ZlZCBmcm9tIHRoZSBoeXBvdG9uaWMgc3Vjcm9zZSBzb2x1dGlvbiBpbnRvIHRoZSBoeXBlcnRvbmljIGNlbGwu[Qq]
[f]IE5vLiBXYXRlciBkb2VzIGZsb3cgZnJvbSBoeXBvdG9uaWMgdG8gaHlwZXJ0b25pYy4gQnV0IHdoYXQgeW91JiM4MjE3O3JlIHNlZWluZyBpcyB0aGUgY2VsbCBpbnRlcmlvciBzaHJpbmtpbmcgYXdheSBmcm9tIGl0cyB3YWxsLCB3aGljaCBpbmRpY2F0ZXMgdGhhdCB0aGUgY2VsbCBsb3N0IHdhdGVyLiBJZiB0aGUgY2VsbCBsb3N0IHdhdGVyLCB3YXMgdGhlIHNvbHV0aW9uIGVudGVyaW5nIG9yIGxlYXZpbmcgdGhlIGNlbGw/[Qq]
[c]IFdhdGVyIG1vbGVjdWxlcyBtb3ZlZCBmcm9tIHRoZSBoeXBvdG9uaWMg Y2VsbCBpbnRvIHRoZSBoeXBlcnRvbmljIHN1Y3Jvc2Ugc29sdXRpb24u[Qq]
[f]IEV4Y2VsbGVudC4gV2hhdCB5b3UmIzgyMTc7cmUgb2JzZXJ2aW5nIGlzIA==cGxhc21vbHlzaXMsIHRoZSBzaHJpbmtpbmcgb2YgdGhlIGNlbGwgbWVtYnJhbmUgYXdheSBmcm9tIHRoZSB3YWxsIGFzIHdhdGVyIGZsb3dzIG91dCBvZiB0aGUgaHlwb3RvbmljIGNlbGwgaW50byBpdHMgaHlwZXJ0b25pYyBlbnZpcm9ubWVudC4=[Qq]
[c]IFN1Y3Jvc2UgZGlmZnVzZWQgZnJvbSBoaWdoZXIgY29uY2VudHJhdGlvbiwgb3V0c2lkZSB0aGUgY2VsbCwgdG8gbG93ZXIgY29uY2VudHJhdGlvbiwgaW5zaWRlIHRoZSBjZWxsLg==[Qq]
[f]IE5vLiBXaGF0IHlvdSYjODIxNztyZSBzZWVpbmcgaXMgdGhlIGNlbGwgaW50ZXJpb3Igc2hyaW5rIGF3YXkgZnJvbSBpdHMgd2FsbCwgd2hpY2ggaW5kaWNhdGVzIHRoYXQgdGhlIGNlbGwgbG9zdCB3YXRlciAoYmVjYXVzZSB3YXRlciBtYWtlcyB1cCBtb3N0IG9mIHRoZSBpbnRlcmlvciBvZiB0aGUgY2VsbCkuIFRoaW5rIGFib3V0IGhvdyB3YXRlciBtb3ZlcyBkdXJpbmcgb3Ntb3NpcyAodGhlIG1vdmVtZW50IG9mIHdhdGVyIG1vbGVjdWxlcykgd2hlbiB5b3Ugc2VlIHRoaXMgcXVlc3Rpb24gYWdhaW4u[Qq]
[c]IFRoZSBtZW1icmFuZSBvZiB0aGUgdmFjdW9sZSBpcyBpbXBlcm1lYWJsZSB0byB3YXRlciBtb2xlY3VsZXMsIGJ1dCBhbGxvd3Mgc3Vjcm9zZSBtb2xlY3VsZXMgdG8gZnJlZWx5IHBhc3MgdGhyb3VnaC4=[Qq]
[f]IE5vLiBZb3UgY2FuIG9ic2VydmUgdGhhdCB0aGUgdmFjdW9sZSBpcyBzaHJpbmtpbmcgaW4gc2l6ZSwgYW5kIHNpbmNlIHdhdGVyIG1ha2VzIHVwIG1vc3Qgb2YgdGhlIHZhY3VvbGUsIHRoaXMgc2hyaW5rYWdlIGhhcyB0byBiZSBkdWUgdG8gd2F0ZXIgbG9zcy4gTmV4dCB0aW1lIHlvdSBzZWUgdGhpcyBxdWVzdGlvbiwgdGhpbmsgYWJvdXQgd2hhdCBoYXBwZW5zIGR1cmluZyBvc21vc2lzICh0aGUgZGlmZnVzaW9uIG9mIHdhdGVyKS4=
Cg==[Qq]
[q json=”true” multiple_choice=”true” unit=”2.Cell Structure and Function” topic=”2.10.Compartmentalization” dataset_id=”Unit 2 Cumulative Multiple Choice Quiz 2 (v2.0)|2234d10d98c433″ question_number=”18″] In which eukaryotic organelle would the process depicted below occur?
[c]IEEgbHlzb3NvbWU=[Qq]
[f]IE5vLiBUaGUgc3RydWN0dXJlIHNob3duIGluICYjODIyMDsyJiM4MjIxOyBpcyBhIHJpYm9zb21lLiBXaGF0JiM4MjE3O3MgdGhlIG9ubHkgZXVrYXJ5b3RpYyBvcmdhbmVsbGUgdGhhdCBoYXMgcmlib3NvbWVzIGVtYmVkZGVkIGluIGl0cyBtZW1icmFuZT8=[Qq]
[c]IFRoZSBHb2xnaSBhcHBhcmF0dXM=[Qq]
[f]IE5vLiBUaGUgc3RydWN0dXJlIHNob3duIGluICYjODIyMDsyJiM4MjIxOyBpcyBhIHJpYm9zb21lLiBXaGF0JiM4MjE3O3MgdGhlIG9ubHkgZXVrYXJ5b3RpYyBvcmdhbmVsbGUgdGhhdCBoYXMgcmlib3NvbWVzIGVtYmVkZGVkIGluIGl0cyBtZW1icmFuZT8=[Qq]
[c]IHRoZSBudWNsZWFyIG1lbWJyYW5l[Qq]
[f]IE5vLiBUaGUgc3RydWN0dXJlIHNob3duIGluICYjODIyMDsyJiM4MjIxOyBpcyBhIHJpYm9zb21lLiBXaGF0JiM4MjE3O3MgdGhlIG9ubHkgZXVrYXJ5b3RpYyBvcmdhbmVsbGUgdGhhdCBoYXMgcmlib3NvbWVzIGVtYmVkZGVkIGluIGl0cyBtZW1icmFuZT8=[Qq]
[c]IHRoZSByb3VnaCBlbmRvcG xhc21pYyByZXRpY3VsdW0=[Qq]
[f]IEV4Y2VsbGVudC4gVGhlIHByb2Nlc3MgaW52b2x2ZXMgcHJvdGVpbiBzeW50aGVzaXMgYnkgZW1iZWRkZWQgcmlib3NvbWVzLCB3aGljaCBvbmx5IG9jY3VycyBpbiB0aGUgcm91Z2ggRS5SLg==
Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 2 Cumulative Multiple Choice Quiz 2 (v2.0)|2234a978cea033″ question_number=”19″ unit=”2.Cell Structure and Function” topic=”2.10.Compartmentalization”] Which of the following is a correct route for flow of materials in the endomembrane system?
[c]IEdvbGdpIHRvIGEgbHlzb3NvbWUgdG8gdGhlIEVSIHRvIHRoZSBwbGFzbWEgbWVtYnJhbmU=[Qq]
[f]IE5vLiBIZXJlJiM4MjE3O3MgYSBoaW50LiBTdHVkeSB0aGUgZW5kb21lbWJyYW5lIHN5c3RlbSBkaWFncmFtIGJlbG93LiBEIGlzIHRoZSBHb2xnaSwgSiBpcyBhIEx5c29zb21lLCBhbmQgQyBpcyB0aGUgcm91Z2ggRVIuIFRoZSBhcnJvd3MgaW5kaWNhdGUgdGhlIGRpcmVjdGlvbiB0aGF0IG1hdGVyaWFsIGlzIGZsb3dpbmcu
Cg==[Qq]
[c]IFJvdWdoIEVSIHRvIHZlc2ljbGVzIHRvIEdv bGdpIHRvIHRoZSBwbGFzbWEgbWVtYnJhbmU=[Qq]
[f]IE5pY2Ugam9iLiBZb3UgaGF2ZSBhIGdvb2QgdW5kZXJzdGFuZGluZyBvZiB0aGUgY2VsbCYjODIxNztzIGVuZG9tZW1icmFuZSBzeXN0ZW0gKHNob3duIGJlbG93KQ==
Cg==[Qq]
[c]IEVSIHRvIGNobG9yb3BsYXN0cyB0byBtaXRvY2hvbmRyaW9uIHRvIHRoZSBjZWxsIG1lbWJyYW5l[Qq]
[f]IE5vLiBTdHVkeSB0aGUgZW5kb21lbWJyYW5lIHN5c3RlbSBkaWFncmFtIGJlbG93LiBEIGlzIHRoZSBHb2xnaSwgSiBpcyBhIEx5c29zb21lLCBhbmQgQyBpcyB0aGUgcm91Z2ggRVIuIFRoZSBhcnJvd3MgaW5kaWNhdGUgdGhlIGRpcmVjdGlvbiB0aGUgbWF0ZXJpYWwgaXMgZmxvd2luZy4=
Cg==[Qq]
[c]IE51Y2xlYXIgZW52ZWxvcGUgdG8gbHlzb3NvbWUgdG8gR29sZ2kgdG8gcGxhc21hIG1lbWJyYW5l[Qq]
[f]IE5vLiBTdHVkeSB0aGUgZW5kb21lbWJyYW5lIHN5c3RlbSBkaWFncmFtIGJlbG93LiBEIGlzIHRoZSBHb2xnaSwgSiBpcyBhIEx5c29zb21lLCBhbmQgQyBpcyB0aGUgcm91Z2ggRVIuIFRoZSBhcnJvd3MgaW5kaWNhdGUgdGhlIGRpcmVjdGlvbiB0aGF0IG1hdGVyaWFsIGlzIGZsb3dpbmcu
Cg==[Qq]
[c]IFRvbm9wbGFzdCB0byBwbGFzbWEgbWVtYnJhbmUgdG8gbnVjbGVhciBlbnZlbG9wZSB0byBzbW9vdGggRVI=[Qq]
[f]IE5vLiBUaGUgdG9ub3BsYXN0IGlzIHRoZSBtZW1icmFuZSBvZiBhIHBsYW50IGNlbGwmIzgyMTc7cyBjZW50cmFsIHZhY3VvbGUsIGFuZCBub3QgYSBwYXJ0IG9mIHRoZSBlbmRvbWVtYnJhbmUgc3lzdGVtLiBTdHVkeSB0aGUgZW5kb21lbWJyYW5lIHN5c3RlbSBkaWFncmFtIGJlbG93LiBEIGlzIHRoZSBHb2xnaSwgSiBpcyBhIEx5c29zb21lLCBhbmQgQyBpcyB0aGUgcm91Z2ggRVIuIFRoZSBhcnJvd3MgaW5kaWNhdGUgdGhlIGRpcmVjdGlvbiB0aGF0IG1hdGVyaWFsIGlzIGZsb3dpbmcu
Cg==Cg==[Qq]
[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 2 Cumulative Multiple Choice Quiz 2 (v2.0)|2233d0f07ccc33″ question_number=”20″ unit=”2.Cell Structure and Function” topic=”2.11.Origins_of_Cell_Compartmentalization”] Which of the following statements describes a fundamental difference between prokaryotic and eukaryotic cells?
[c]IFByb2thcnlvdGljIGNlbGxzIGNvbnRhaW4gRE5BIGFuZCBldWthcnlvdGljIGNlbGxzIGRvIG5vdC4=[Qq]
[f]IE5vLiBXaXRoIHRoZSBleGNlcHRpb24gb2YgYSBmZXcgc3BlY2lhbGl6ZWQgY2VsbHMgbGlrZSByZWQgYmxvb2QgY2VsbHMsIGFsbCBjZWxscyBjb250YWluIEROQS4=[Qq]
[c]IEV1a2FyeW90aWMgY2VsbHMgY29udGFpbiBETkEgYW5kIHByb2thcnlvdGljIGNlbGxzIGRvIG5vdC4=[Qq]
[f]IE5vLiBXaXRoIHRoZSBleGNlcHRpb24gb2YgYSBmZXcgc3BlY2lhbGl6ZWQgY2VsbHMgbGlrZSByZWQgYmxvb2QgY2VsbHMsIGFsbCBjZWxscyBjb250YWluIEROQS4=[Qq]
[c]IFByb2thcnlvdGljIGNlbGxzIGhhdmUgYSBudWNsZXVzIGFuZCBldWthcnlvdGljIGNlbGxzIGRvIG5vdC4=[Qq]
[f]IE5vLiBMb29rIGF0IHRoZSBkaWFncmFtIGJlbG93LCB3aGljaCBzaG93cyBhbiBhbmltYWwgY2VsbCAoYSB0eXBlIG9mIGV1a2FyeW90aWMgY2VsbCkuIFdoYXQmIzgyMTc7cyB0aGUgc3RydWN0dXJlIGF0IDU/
Cg==[Qq]
[c]IEV1a2FyeW90aWMgY2VsbHMgaGF2ZSBhIG51Y2xldX MgYW5kIHByb2thcnlvdGljIGNlbGxzIGRvIG5vdC4=[Qq]
[f]IFRoYXQmIzgyMTc7cyByaWdodC4gRXVrYXJ5b3RpYyBjZWxscyBoYXZlIGEgbnVjbGV1cywgYW5kIHByb2thcnlvdGljIGNlbGxzIGRvIG5vdC4=[Qq]
[c]IFByb2thcnlvdGljIGNlbGxzIGNvbnRhaW4gY3l0b3BsYXNtaWMgb3JnYW5lbGxlcyBhbmQgZXVrYXJ5b3RpYyBjZWxscyBkbyBub3Qu[Qq]
[f]IE5vLiBMb29rIGF0IHRoZSBkaWFncmFtIGJlbG93LCB3aGljaCBzaG93cyBhbiBhbmltYWwgY2VsbCAoYSB0eXBlIG9mIGV1a2FyeW90aWMgY2VsbCkuIFdoYXQgd291bGQgeW91IGNhbGwgc3RydWN0dXJlcyBsaWtlIDMsIDcsIDgsIGFuZCA5Pw==
Cg==[Qq]
[/qwiz]
5. Unit 2 Cumulative FRQs
[qwiz style=”width: 550px !important; min-height: 400px !important;” dataset=”Unit 2 Cumulative FRQs” qrecord_id=”sciencemusicvideosMeister1961-Unit 2 Cumulative FRQs”]
[h]Unit 2 Cumulative FRQs
[i]
[q json=”true” xx=”1″ multiple_choice=”false” unit=”2.Cell Structure and Function” dataset_id=”Unit 2 Cumulative FRQs|1bb15bade97e00″ question_number=”1″ topic=”2.1-2.2.Cell_Parts”] In terms of organelles, what specialized structures would you see in a eukaryotic cell whose function was either locomotion or transport?
[c]IFNob3cgdGhl IGFuc3dlcg==[Qq]
[f]IEEgZXVrYXJ5b3RpYyBjZWxsIHdob3NlIGZ1bmN0aW9uIGlzIGVpdGhlciBsb2NvbW90aW9uIG9yIHRyYW5zcG9ydCB3b3VsZCBoYXZlIHN1cmZhY2UgbW90b3Igb3JnYW5lbGxlcywgc3VjaCBhcyA=Y2lsaWE=IG9yIA==ZmxhZ2VsbGE=[Qq], and many mitochondria (to create the ATP required to power these motor organelles).
[q json=”true” multiple_choice=”false” unit=”2.Cell Structure and Function” topic=”2.1-2.2.Cell_Parts” dataset_id=”Unit 2 Cumulative FRQs|1bb1490d8a5e00″ question_number=”2″] The model below shows three levels of structure of an important eukaryotic sub-cellular component.
PART 1: Name the highlighted structure at B. Name and describe the major cellular process taking place within this structure.
PART 2: Explain the significance of the folds in the membrane of this cellular component (image C)
[c]IFNob3cgdGhl IGFuc3dlcg==[Qq]
[f]
Cg==UEFSVCAxOiBUaGUgc3RydWN0dXJlIGlzIGEgbWl0b2Nob25kcmlvbi4gVGhlIG1ham9yIGNlbGx1bGFyIHByb2Nlc3MgdGhhdCB0YWtlcyBwbGFjZSBpbiB0aGUgbWl0b2Nob25kcmlhIGlzIGNlbGx1bGFyIHJlc3BpcmF0aW9uLiBDZWxsdWxhciByZXNwaXJhdGlvbiBpcyB0aGUgcHJvY2VzcyBvZiBjcmVhdGluZyBBVFAgZnJvbSBnbHVjb3NlIGFuZCBveHlnZW4gcmVhY3RhbnRzLiAqTk9URTogbm8gY3JlZGl0IGlzIGdpdmVuIGZvciBzaW1wbHkgc3RhdGluZyDigJxjZWxsdWxhciByZXNwaXJhdGlvbuKAnQ==
Cg==UEFSVCAyOiBUaGUgZm9sZHMgaW4gdGhlIG1lbWJyYW5lIG9mIHRoZSBtaXRvY2hvbmRyaWEgaW5jcmVhc2Ugc3VyZmFjZSBhcmVhLiBCeSBpbmNyZWFzaW5nIHRoZSBzdXJmYWNlIGFyZWEsIG1pdG9jaG9uZHJpYSBoYXZlIG1vcmUgcm9vbSBmb3IgdGhlIG1vbGVjdWxhciBzdHJ1Y3R1cmVzIGluIHRoZSBpbm5lciBtaXRvY2hvbmRyaWFsIG1lbWJyYW5lIHRoYXQgY3JlYXRlIEFUUC4=
[Qq][q json=”true” multiple_choice=”false” unit=”2.Cell Structure and Function” topic=”2.3.Cell_Size” dataset_id=”Unit 2 Cumulative FRQs|1bb1366d2b3e00″ question_number=”3″] The figure above shows cells in the sepal epidermis of a plant species belonging to the genus Arabidopsis. The image was taken with a scanning electron microscope and shows a variety of different cell morphologies in the epidermis. The scale bar represents 50 μm. Cell A is a cuboidal cell with a side length of 20μm. Cell B is a cuboidal cell with a side length of 10μm.
PART 1: Calculate the surface area to volume ratio of Cell A and Cell B.
PART 2: Explain which of the two cells, Cell A or Cell B, would be most efficient at exchanging nutrients with the surrounding environment.
[c]IFNob3cgdGhl IGFuc3dlcg==[Qq]
[f]
Cg==UEFSVCAxOg==
Cg==- Cg==
- [Qq]Cell A. The surface area is 2400 μm2 (20 x 20 x 6). The volume is 8000 μm3 (20 x 20 x 20). The surface area to volume ratio is 0.3.
- Cell B: The surface area is 600 μm2 (10 x 10 x 6). The volume is 1000 μm3 (10 x 10 x 10). The surface area to volume ratio is 0.6.
PART 2: Cell B will be more efficient at exchanging nutrients with the environment as it has a higher surface area-to-volume ratio.
[q json=”true” multiple_choice=”false” unit=”2.Cell Structure and Function” topic=”2.6-7,_2.9.Membrane_Transport” dataset_id=”Unit 2 Cumulative FRQs|1bb123cccc1e00″ question_number=”4″] Scientists wish to examine the effects of inhibiting ATP production on the transport of two different substances (A and B) across the cell membrane.
PART 1: Predict which substance’s transport will be most affected by the inhibition of ATP. Justify your answer.
PART 2: Describe two possible reasons why substances A and B cannot move through the phospholipid bilayer directly.
[c]IFNob3cgdGhl IGFuc3dlcg==[Qq]
[f]
Cg==UEFSVCAxOiBUaGUgdHJhbnNwb3J0IG9mIHN1YnN0YW5jZSBBIHdpbGwgYmUgbW9zdCBhZmZlY3RlZCBieSB0aGUgaW5oaWJpdGlvbiBvZiBBVFAuIFRoaXMgcHJvY2VzcyBzaG93cyBhY3RpdmUgdHJhbnNwb3J0LCBtb3ZpbmcgdGhlIHN1YnN0YW5jZSBmcm9tIGFuIGFyZWEgb2YgbG93IGNvbmNlbnRyYXRpb24gdG8gYSBoaWdoIGNvbmNlbnRyYXRpb24sIGFnYWluc3QgdGhlIGNvbmNlbnRyYXRpb24gZ3JhZGllbnQuIFRoaXMgcmVxdWlyZXMgZW5lcmd5IGluIHRoZSBmb3JtIG9mIEFUUC4=
Cg==UEFSVCAyOiBNb2xlY3VsZXMgQSBhbmQgQiBjb3VsZCBiZSBjaGFyZ2VkIG9yIHRvbyBsYXJnZSB0byBkaWZmdXNlIGFjcm9zcyB0aGUgbWVtYnJhbmUgd2l0aG91dCBhIGNoYW5uZWwgcHJvdGVpbi4=[Qq]
[q json=”true” multiple_choice=”false” unit=”2.Cell Structure and Function” topic=”2.6-7,_2.9.Membrane_Transport” dataset_id=”Unit 2 Cumulative FRQs|1bb1112c6cfe00″ question_number=”5″] Avicennia marina is a species of mangrove that is adapted to grow in extremely salty conditions. Mangroves are often found in coastal waters and can withstand a salt concentration that’s up to 2.5X saltier than normal seawater. Avicennia marina has specialized glands which allow the plant to secrete salt from the inner leaf to the surface of the cuticle.
PART 1: Explain the necessity of channel proteins in regulating salt concentration within Avicennia marina.
PART 2: Propose the type of transport used in the gland membrane of Avicennia marina, as salt is moved from the inside of the cell to the outside of the cuticle. Justify your response.
[c]IFNob3cgdGhl IGFuc3dlcg==[Qq]
[f]
Cg==UEFSVCAxOiBDaGFubmVsIHByb3RlaW5zIGFyZSBuZWNlc3NhcnkgZm9yIHJlZ3VsYXRpbmcgc2FsdCBjb25jZW50cmF0aW9uIGJlY2F1c2Ugc2FsdCBpb25zIGNhbm5vdCBtb3ZlIHRocm91Z2ggdGhlIHBob3NwaG9saXBpZCBiaWxheWVyIGZyZWVseSAoYmVjYXVzZSBpb25zIGFyZSBjaGFyZ2VkKS4gVGhlcmVmb3JlIHRoZSBjaGFubmVsIHByb3RlaW5zIGhlbHAgbW92ZSB0aGUgaW9ucyBhY3Jvc3MgdGhlIG1lbWJyYW5lLg==
Cg==UEFSVCAyOiBBY3RpdmUgdHJhbnNwb3J0IG11c3QgYmUgdXNlZCB0byBtb3ZlIHNhbHQgZnJvbSB0aGUgaW5zaWRlIHRvIHRoZSBvdXRzaWRlIG9mIHRoZSBsZWFmLiBUaGlzIGlzIGJlY2F1c2UgdGhlIGlvbnMgYXJlIG1vdmluZyBmcm9tIGFuIGFyZWEgb2YgbG93IHRvIGhpZ2ggY29uY2VudHJhdGlvbiwgYWdhaW5zdCB0aGUgY29uY2VudHJhdGlvbiBncmFkaWVudCwgcmVxdWlyaW5nIGVuZXJneS4=
[Qq][q json=”true” multiple_choice=”false” unit=”2.Cell Structure and Function” topic=”2.8.Tonicity_and_Osmoregulation” dataset_id=”Unit 2 Cumulative FRQs|1bb0e047734a00″ question_number=”6″] Scientists are studying a group of bacteria adapted to living in salt water. The scientists measure the effect of salt concentration on the amount of osmotic lysis observed in a population of bacterial cells.
PART 1: Identify the salt water concentration in which the bacterial cells are best adapted to live (response can be a range)
PART 2: Explain the relationship between NaCl concentration and lysis.
PART 3: Predict the effects of placing a different species of bacterial cells adapted for a freshwater environment (0 M NaCl) into salt water.
[c]IFNob3cgdGhl IGFuc3dlcg==[Qq]
[f]
Cg==UEFSVCAxOiAzTSB0byA0TQ==
Cg==UEFSVCAyOiBUaGUgbG93ZXIgdGhlIGNvbmNlbnRyYXRpb24gb2Ygc2FsdCwgdGhlIG1vcmUgY2VsbHMgYXJlIGx5c2VkLiBUaGlzIGlzIGJlY2F1c2Ugb3Ntb3RpYyBwcmVzc3VyZSBjYXVzZXMgd2F0ZXIgdG8gbW92ZSBpbnRvIHRoZSBjZWxscywgY2F1c2luZyB0aGVtIHRvIGV4cGFuZCB1bnRpbCB0aGV5IGJ1cnN0IChseXNpcykuIFRoaXMgbWVhbnMgdGhhdCB0aGUgbG93ZXIgdGhlIGNvbmNlbnRyYXRpb24gb2YgTmFDbCBpbiB0aGUgc29sdXRpb24sIHRoZSBoaWdoZXIgdGhlIGNvbmNlbnRyYXRpb24gb2Ygd2F0ZXIuIFdhdGVyIHdpbGwgbW92ZSBpbnRvIHRoZSBjZWxsIGZyb20gaGlnaCBjb25jZW50cmF0aW9uIHRvIGxvdyBjb25jZW50cmF0aW9uLg==
[Qq]PART 3: In this case, we’d be placing the bacterial cells into a hypertonic solution Water would leave these bacterial cells and move into the saltwater environment, causing the cells to shrivel up (and presumably die).
[q json=”true” multiple_choice=”false” unit=”2.Cell Structure and Function” topic=”2.8.Tonicity_and_Osmoregulation” dataset_id=”Unit 2 Cumulative FRQs|1bb0cb53084600″ question_number=”7″] Lampreys are aquatic organisms that are often born in freshwater, but later in life migrate to saltwater. Below is a model of lamprey osmoregulation in freshwater, during their early stages of development.
PART 1: Explain why water is moving into the lamprey in freshwater conditions
PART 2: Identify one structural component of a Lamprey’s plasma membrane that allows water to enter.
PART 3: Predict what will happen to the net movement of ions as the lamprey migrates from freshwater to saltwater, and justify your response
PART 4: Predict what will happen to water movement as lampreys move from freshwater to saltwater.
[c]IFNob3cgdGhl IGFuc3dlcg==[Qq]
[f]
Cg==UEFSVCAxOiBJbiBmcmVzaHdhdGVyLCB0aGVyZSBpcyBhIGhpZ2hlciBjb25jZW50cmF0aW9uIG9mIHdhdGVyIG91dHNpZGUgb2YgdGhlIGxhbXByZXkgKHdoZXJlIHRoZSBzb2x1dGUgY29uY2VudHJhdGlvbiBpcyBsZXNzIHRoYW4gNTAgbU9zbS9MKSB0aGFuIGluc2lkZSAod2hlcmUgaXQmIzgyMTc7cyBvdmVyIDIyNSBtT3NtL0wpLiBBIGxvd2VyIHNvbHV0ZSBjb25jZW50cmF0aW9uIG1lYW5zIGEgaGlnaGVyIHdhdGVyIGNvbmNlbnRyYXRpb24uIFdhdGVyIG1vdmVzIGZyb20gaGlnaCB0byBsb3cgY29uY2VudHJhdGlvbiwgc28gdGhlcmVmb3JlIHdhdGVyIG1vdmVzIGludG8gdGhlIGxhbXByZXku
Cg==UEFSVCAyOiBBcXVhcG9yaW5zIGFyZSBzcGVjaWFsaXplZCBwcm90ZWlucyBpbiB0aGUgcGxhc21hIG1lbWJyYW5lIHRoYXQgYWxsb3cgZm9yIHRoZSBkaWZmdXNpb24gb2Ygd2F0ZXIu
[Qq]PART 3: In saltwater, we can assume that the higher concentration of ions is outside the lamprey and will cause ions to move into the lamprey.
PART 4: In saltwater, the lampreys will be in a hypertonic solution, and therefore water will flow from their bodies into the surrounding seawater.
[q json=”true” multiple_choice=”false” unit=”2.Cell Structure and Function” topic=”2.8.Tonicity_and_Osmoregulation” dataset_id=”Unit 2 Cumulative FRQs|1bb0b40a915e00″ question_number=”8″] Aedes aegypti is a species of mosquito that often carries pathogens. Females lay eggs in freshwater because high salinity is lethal to mosquito offspring. Recently, scientists determined that a gene, ppk301, is necessary for mosquitoes to successfully lay their eggs in the right type of water. The ppk301 gene was determined to code for an ion channel in the cell membrane of the mosquitoes.
A researcher has proposed that inhibition of ppk301 could be used to control mosquito-borne diseases.
PART 1: Propose an explanation why high salinity is lethal to mosquito offspring but freshwater is not.
PART 2: With reference to the structure of the cell membrane, explain why Na+ must use the ppk301 channel to enter the cell.
PART 3: Describe how the inhibition of ppk301 channels would help prevent mosquito-borne diseases.
[c]IFNob3cgdGhl IGFuc3dlcg==[Qq]
[f]
Cg==UEFSVCAxOiBJbiBoaWdoIHNhbGluaXR5LCB0aGUgY2VsbHMgb2YgbW9zcXVpdG8gb2Zmc3ByaW5nIHdpbGwgYmUgaW4gYSBoeXBlcnRvbmljIHNvbHV0aW9uLiBXYXRlciB3aWxsIGxlYXZlIHRoZSBjZWxscyB0aHJvdWdoIG9zbW9zaXMsIGRhbWFnaW5nIG9yIGtpbGxpbmcgdGhlIGNlbGxzIGFuZCBldmVudHVhbGx5IGtpbGxpbmcgdGhlIGRldmVsb3Bpbmcgb2Zmc3ByaW5nLg==
Cg==UEFSVCAyOiBUaGUgY2VsbCBtZW1icmFuZSBpcyBjb21wcmlzZWQgb2YgYSBwaG9zcGhvbGlwaWQgYmlsYXllciB3aXRoIGh5ZHJvcGhpbGljIGhlYWRzIGFuZCBoeWRyb3Bob2JpYyB0YWlscy4gVGhlIGlvbnMgY2FuJiM4MjE3O3QgcGFzcyB0aHJvdWdoIHRoZSBwaG9zcGhvbGlwaWQgYmlsYXllciwgYmVjYXVzZSB0aGV5JiM4MjE3O3JlIHJlcGVsbGVkIGJ5IHRoZSBoeWRyb3Bob2JpYyB0YWlscyBvZiB0aGUgYmlsYXllci4=
[Qq]PART 3: Without a working ppk301 channel, mosquitos would not be able to detect salt water. They would lay more eggs in salt water, and these eggs would not survive to maturity.
[q json=”true” xx=”1″ multiple_choice=”false” unit=”2.Cell Structure and Function” dataset_id=”Unit 2 Cumulative FRQs|1bb08579a38e00″ question_number=”9″ topic=”2.8.Tonicity_and_Osmoregulation”] The freshwater unicellular eukaryote Paramecium caudatum has a contractile vacuole that adapts to changes in osmolarity by adjusting pumping frequency. If Paramecia need to pump out more water from the cell, the contractile vacuole pumps at a faster rate (and the reverse is true as well).
A student does an experiment where she creates solutions of increasing osmolarity, adds Paramecia, and then counts the number of contractile vacuole pumps/minute. None of the solutions have a higher osmolarity than the osmolarity of the paramecium’s cytosol. Predict what will happen. Justify your prediction using terms related to osmosis (hypotonic, hypertonic, isotonic) or water potential.
[c]IFNob3cgdGhl IGFuc3dlcg==[Qq]
[f]
Cg==UFJFRElDVElPTjogQXMgdGhlIG9zbW9sYXJpdHkgb2YgdGhlIHBhcmFtZWNpdW0mIzgyMTc7cyBlbnZpcm9ubWVudCBpbmNyZWFzZXMsIHRoZSByYXRlIG9mIGNvbnRyYWN0aW9uIG9mIHRoZSBjb250cmFjdGlsZSB2YWN1b2xlIHdpbGwgZGVjcmVhc2Uu
Cg==SlVTVElGSUNBVElPTjogQSBQYXJhbWVjaXVtJiM4MjE3O3PCoGN5dG9zb2wgaXMgaHlwZXJ0b25pYyB0byB0aGUgcGFyYW1lY2l1bSYjODIxNztzIGZyZXNod2F0ZXIgZW52aXJvbm1lbnQuIEFzIGEgcmVzdWx0LMKgIHdhdGVyIGNvbnN0YW50bHkgZmxvd3MgaW50byB0aGUgUGFyYW1lY2l1bS4gVG8gbWFpbnRhaW4gaXRzIG9zbW90aWMgYmFsYW5jZSAob3IgJiM4MjIwO29zbW9yZWd1bGF0ZSYjODIyMTspIHRoZSBQYXJhbWVjaXVtIHVzZXMgaXRzIGNvbnRyYWN0aWxlIHZhY3VvbGUgdG8gcHVtcCB3YXRlciBvdXQu
[Qq]As the experimenter increases the molarity of the surrounding solution, the osmolarity of that solution will become increasingly close to the osmolarity of the paramecium. With a water concentration gradient that’s less steep, water will diffuse in at a slower rate, and the contractile vacuole won’t have to pump as often. Eventually, the environmental osmolarity will rise to a point where the environment is isotonic to the cytosol, and, at that point, the contractile vacuole wouldn’t have to contract at all.
ALTERNATIVE EXPLANATION (USING WATER POTENTIAL): In terms of water potential, water always flows from higher to lower water potential. A paramecium in freshwater has a much higher solute concentration than its environment. That lowers the overall water potential in the paramecium, so water flows into the paramecium. To counteract that flow, the contractile vacuole pumps water out. As the solute concentration of the surrounding solution increases, the water potential of the solution outside the paramecium decreases. As a result, less water flows into the paramecium, and the contractile vacuole responds by pumping at a slower rate. NOTE: there might be differences in the pressure potential related to the paramecium’s pellicle: a kind of protein girdle that prevents over-expansion (playing much the same role as the cell wall in a plant cell).
[q json=”true” multiple_choice=”false” unit=”2.Cell Structure and Function” topic=”2.11.Origins_of_Cellular_Compartmentalization” dataset_id=”Unit 2 Cumulative FRQs|1bafbd3da4f600″ question_number=”10″] The image below shows a model of the origin of mitochondria. The blue cell represents an ancestral prokaryotic species related to modern mitochondria.
PART 1: Describe the metabolic inputs and outputs taking place in the ancestral prokaryote (cell A).
PART 2: Identify one piece of evidence that supports the model of mitochondria evolving from free-living prokaryotic ancestral species.
PART 3: Explain two evolutionary benefits of the compartmentalization of organelles within eukaryotic cells.
[c]IFNob3cgdGhl IGFuc3dlcg==[Qq]
[f]
Cg==UEFSVCAxOiBUaGUgYW5jZXN0cmFsIHByb2thcnlvdGUgKGNlbGwgQSkgaXMgdGFraW5nIGluIG9yZ2FuaWMgbWF0dGVyIGFuZCBveHlnZW4gKGlucHV0cykgYW5kIGNvbnZlcnRpbmcgdGhlbSBpbnRvIGNhcmJvbiBkaW94aWRlLCBoeWRyb2dlbiwgYW5kIGFjZXRhdGUgKG91dHB1dHMpLg==
Cg==UEFSVCAyOiBBbnkgb25lIG9mIHRoZSBmb2xsb3dpbmc6IDEpIE1pdG9jaG9uZHJpYSBoYXZlIHRoZWlyIG93biB1bmlxdWUgRE5BIChNaXRvY2hvbmRyaWFsIEROQSkgdGhhdCYjODIxNztzIHNlcGFyYXRlIGZyb20gbnVjbGVhciBETkEuIDIpIE1pdG9jaG9uZHJpYWwgcmlib3NvbWVzIGFyZSBzaW1pbGFyIGluIHN0cnVjdHVyZSB0byBiYWN0ZXJpYWwgcmlib3NvbWVzLiAzKSBNaXRvY2hvbmRyaWFsIEROQSBpcyBzaW1pbGFyIHRvIGJhY3RlcmlhbCBETkEgKGNpcmN1bGFyLCBhcyBvcHBvc2VkIHRvIGxpbmVhcikuIDQpIE1pdG9jaG9uZHJpYSBoYXZlIGEgZG91YmxlIG1lbWJyYW5lLiBUaGUgb3V0ZXIgbWVtYnJhbmUgaXMgdGhvdWdodCB0byBiZSBhIHZlc3RpZ2Ugb2YgdGhlIGhvc3QgY2VsbCBtZW1icmFuZSB0aGF0IGVuZ3VsZmVkIHRoZSBhbmNpZW50IGFuY2VzdG9yIG9mIG1pdG9jaG9uZHJpYS4=
[Qq]PART 3: Any two of the following (and others are possible). 1) It allows Eukaryotes to carry out multiple metabolic processes at once, leading to higher efficiency in growth, reproduction, etc. 2) It creates internal membranes such as the E.R. and Golgi, creating more internal surface area for membrane-bound enzymes. 3) It allows the cell to have regions with internal chemistry that’s different from the cytoplasm as a whole. For example, hydrolytic enzymes can safely work within a lysosome, without exposing the rest of the cytoplasm to these enzymes. Similar regions of unique chemistry can be found in the ER, the Golgi, or vacuoles.
[/qwiz]
6. Unit 2 Cell Parts and Functions Click-On Challenge
Note: the Krebs cycle is a part of cellular respiration. When you see a question about the Krebs cycle, think of where cellular respiration happens.
[qwiz random=”true” style=”width: 600px !important; min-height: 400px !important;” use_dataset=”Cell Parts and Functions Click On Dataset” dataset_intro=”true” quiz_timer=”true” spaced_repetition=”false” qrecord_id=”sciencemusicvideosMeister1961-Unit 2 Click-On Challenge”]
[h] Unit 2 Cell Parts and Functions Click On Challenge
[i] Notice the timer in the upper right. Your goal is to work as quickly and accurately as possible.
[/qwiz]
7. Unit 2 Cell Membranes Click-On Challenge
[qwiz use_dataset=”Membranes Click-on Challenge dataset” quiz_timer=”true” dataset_intro=”true” spaced_repetition=”false” random=”true” style=”width: 600px !important; min-height: 450px !important;” qrecord_id=”sciencemusicvideosMeister1961-Unit 2 Cell Membranes Click-on Challenge”]
[h] Cell Membranes Click-on Challenge
[i] Notice the timer in the upper right. Your goal is to work as quickly and accurately as possible.
[x][restart]
[/qwiz]
Notes
These two objectives from Topic 2.4 are covered in Unit 3;
- Explain membrane potential
- Connect membrane potential to processes such as ATP synthesis.