Looking for a student learning guide? It’s on the Course Introduction main menu.

1. Welcome!

By watching the video below, and by doing the interactive activities at the bottom of this page, you’ll start to build a conceptual framework that will help you to learn the many ideas that you’ll encounter this year in your AP Biology course.

Below the video, I’ve provided a loose (not word-for-word) transcript of the video. After you’re done watching the video, you might want to read this text and study the diagrams. Then practice what you’ve learned through the flashcards and quiz. 

2. Video: Biology’s 4 Big Ideas

3. Biology’s Four Big Ideas (text version)

An appleThese four ideas explained below were developed by the College Board, the organization that develops and administers the AP Biology exam. These ideas serve as an intellectual scaffold that you can use to organize all of the information in this very information-rich subject. Here are the four ideas:

  1. Evolution;
  2. Information storage and transmission;
  3. Energy and matter flow; and
  4. Systems and system interactions.

You can see all of them right here… in an apple.

Idea # 1: Evolution

Evolution is the process by which living things change over time. This apple is a Gala (or a Gāla, depending on how you like to pronounce it). It’s a cultivated variety of a wild undomesticated apple that first evolved in Central Asia. If you could go back in time a few hundred years you wouldn’t find a Gala apple. That’s because this variety has only been cultivated for about a hundred years. It’s one of the hundreds of apple varieties, each with different appearances and tastes, that humans have created through selective breeding.

Phylogenetic tree of plants. Ferns are the outgroup. Apples and crabapples are the most closely related.
Phylogeny (evolutionary tree) of apples

Evolution is a process that unfolds over time. You can use a diagram like this — called a phylogenetic tree — to represent the evolutionary history of any organism, including apples. Apples have a common relatively recent ancestor with crab apples. They’re more distantly related to fruit such as pears. Apples, crab apples, and pears are part of an enormous group of species called the flowering plants that first emerged over a hundred million years ago in the time of the dinosaurs. A more ancient ancestor gave rise to plants with seeds but no flowers (like pine trees) about 350 million years ago. You can push further back to seedless plants (like ferns), and eventually, you reach an ancestor that wasn’t a plant at all. Before 450 million years ago there was no life on land. There were no plants. At that point, the apple’s ancestor was some kind of aquatic photosynthetic algae.

Phylogenetic tree of showing the three domains: Bacteria (purple), Archaea (red), and Eukaryota (brown). Archea and Eukaryota are more closely related to each other than to Bacteria.
Phylogenetic tree of all living things, showing the three domains, Bacteria (purple), Archaea (red), and Eukaryota (brown)

It’s possible to create a phylogenetic tree that covers all of evolutionary history — essentially the tree of life. On the upper right side of the diagram, you can find the Plant Kingdom (Plantae), the group to which apples belong. A bit above that and slightly to the left is our kingdom, Animalia (the animal kingdom). Note that we and apples have an ancestor in common. The apple is our evolutionary cousin, as is every other living thing. Is there evidence for that astounding claim? Of course: it’s embedded in our genes, our cellular structure, and our metabolism. We’ll present the evidence for that later in this course.

Evolution produces adaptations: structures with functions that help organisms survive and reproduce. The skin of this apple is an adaptation that evolved to attract animals by letting the apple stand out against a background of green leaves. That’s a trait that co-evolved with color vision in fruit-loving primates like ourselves. The apple’s skin also protects the apple’s flesh from bacteria and fungi. The flesh is an adaptation that evolved to be a reward for animals that would eat the fruit and swallow the seeds. The seeds themselves have other adaptations including a protective seed coat that allows the seeds to pass through an animal’s gut without being broken down by the acids in an animal’s stomach. This allows the seeds to be deposited somewhere where they can grow into new apple trees.

Adaptations come about through a process called natural selection. In any population, there’s variation in traits. Among the apple seeds, there are going to be some that have thicker coats and some that have thinner coats. Some of that variation is determined by genes. Variants that are unsuccessful — which means that they’re not very good at promoting survival and reproduction — are going to wind up being removed from the population. An apple seed that has a coat that’s too thin is going to wind up being dissolved in the stomach as it passes through an animal’s gut. The genes for that trait are also going to be dissolved. That means that those genes won’t wind up being represented in the next generation’s gene pool. The opposite is going to happen to more adaptive traits (those that help an organism to survive and reproduce). So over time, natural selection shapes adaptations. It’s that simple.

Idea # 2: Information Storage and Transmission

GIF of stick model of a DNA molecule rotating counterclockwise.
DNA (deoxyribonucleic acid): life’s key information storage molecule

The second big idea in our course is information storage and transmission. Again, think about this apple. You plant an apple seed, and you get a new plant. What the seed is transmitting is information about how to build a new tree. That information is genetic information and it’s stored in a molecule called DNA.

Diagram of a basic cell which shows the direction of information flow. Inside the nucleus, an arrow points from double-stranded "DNA" to single-stranded "RNA message". A second arrow points from "RNA message" out of the nucleus towards the "Protein" (polypeptide chain) emerging from the "Ribosomes".
Information flow within cells

Let’s think about DNA in the context of a cell. DNA is in the cell’s nucleus and it sends a message that goes to particles called ribosomes. Ribosomes are incredible: what they can do is take information sent by DNA and translate it into protein. Protein determines the characteristics of cells. And, through many complex mechanisms, proteins will wind up determining the characteristics of the entire organism. And that information has been changing over evolutionary time. In fact, you can think of evolution as a change in the genetic information carried within a population’s gene pool.

Idea # 3: Energy and Matter Flow

Diagram showing inputs (light energy, carbon dioxide, and water) and outputs (carbohydrate and oxygen) of photosynthesis. A yellow sun sends rays labeled "1" towards the flower ("4") of the plant. Lavender arrows labeled "2" point from air to the left of the plant towards its green leaves, also labeled "4". Blue water in the soil underground has an arrow labeled "3" pointing towards the roots of the plant. Dark blue arrows point from the leaves to the atmosphere and are labeled "5". Described under heading Idea # 3: Energy and Matter Flow, paragraph 1.
Photosynthesis. 1: sun. 2: carbon dioxide. 3: water. 4. Carbohydrate. 5. Oxygen

The third theme is energy and matter flow. This apple was built by cells using solar energy. Photosynthesis is one of the great energy reactions of living things. What photosynthetic cells can do is take free energy in sunlight (free energy is available energy that can be harvested to do work) and use that energy to combine carbon dioxide (a gas in the air) and water to create carbohydrates. Those carbohydrates are full of stored chemical energy that plants can use to power their own life processes. These carbohydrates also provide the matter — the carbon, hydrogen, and oxygen atoms— that plants use to build themselves. Once captured by plants, that energy can pass to animals like you and me. What we animals do is take that stored chemical energy and combine it with oxygen, releasing the energy we need to sustain our life processes. We breathe out the exhaust: carbon dioxide and water vapor. The entire process is called cellular respiration. It’s performed by plants, too, and it’s life’s other great energy-related process.

So we have energy flow from the sun into plants and then into animals like you and me. Note that this is a one-way flow. The energy isn’t lost, but it starts as useful energy that can be harnessed for work, and by the time living things are done with it, it’s useless heat. Energy flows through living things and then dissipates. In almost every ecosystem on Earth, life is sustained by a constant flow of energy from the Sun.

Diagram of the carbon cycle. Described under the heading Idea # 3: Energy and Matter Flow, paragraph 3.
The carbon cycle

Matter works differently: it’s recycled. Carbon, for example, will move from carbon dioxide in the air into plants like apple trees. Plants, in addition to doing photosynthesis, also do cellular respiration and that returns some carbon dioxide into the air. The carbohydrates made by plants can then pass to animals. We perform cellular respiration and that again returns carbon dioxide to the air. When living things die they’re decomposed by bacteria and fungi. Decomposition returns carbon dioxide to the atmosphere. The same atoms have been cycling on planet Earth for billions of years.

Idea # 4: Interacting Systems

Idea number four is that life is composed of complex interacting systems. A system is a group of connected things that form a larger whole. You know that phrase “the whole is greater than the sum of its parts?” That’s what systems are all about.

Diagram of an illustrated plant cell. Numbered arrows point to different structures. The plant cell is roughly cuboidal in shape and contains numerous organelles.
Plant cell

The systems that we’ll look at most in this course are cells, the building blocks of life. Earlier we looked at the Tree of Life. You can see above that the tree has a common stem and that there are three major branches. Each branch is a Domain. That’s the biggest classification category and it’s based on cell type. Simpler, smaller cells are found in bacteria and archaea. Much more complex cells are found in our Domain, the eukaryotes. Apple trees are composed of eukaryotic cells that are like the one shown on the left. These cells interconnect to form tissues like the photosynthetic tissue in a leaf. Interacting tissues form organs like the leaf itself.

At every level, new properties emerge as the system grows more complex. Organisms, whether they’re made of one cell like a Paramecium or trillions of cells like you and me, are open systems. That means that they have input and outputs. The inputs in terms of cellular respiration are things like fuel food and oxygen. The outputs are things like carbon dioxide, water, and other wastes.

Systems interact. When I took a bite out of this apple that was one organism consuming another organism. That’s an important kind of interaction. Living systems are also embedded within other systems. An apple tree, for example, is part of a wider ecosystem composed of interacting populations and the nonliving matter and energy that sustain them. All ecosystems are part of the biosphere, the living system that includes all life on Earth.

4. Checking Understanding: Biology’s Four Big Ideas

How are you going to learn this? You’ve got to interact with this information to learn it. Study the flashcards and complete the quiz below. DON’T WORRY ABOUT GETTING THIS RIGHT THE FIRST TIME. You can take as much time as you need until you can correctly respond to the prompts in the flashcards and quizzes with accuracy and confidence.

Most of the questions in the flashcards and the quiz come directly from the video above. But some don’t. Use the flashcards and quiz as an opportunity to learn this material, which will give you a foundation for all the learning you’ll do this year.

4a. AP Bio Themes, Big Ideas Flashcards

[qdeck random = “false” bold_text=”false” qrecord_id=”sciencemusicvideosMeister1961-Big Ideas FC (2.0)”]

[h]AP Biology Themes, Big ideas

Flashcards are all about achieving mastery and fluency.

Look at the question. Say the answer out loud.
Click “Check Answer.”
If you get it right, click “Got it”
If you need more practice, click “Need more practice”
Keep working until you’ve mastered all the cards.

[!!!!]++card :record #A2207+++[/!!!!]
[q json=”true” unit = “U1: Course Themes; Evolution and Natural Selection” topic = “M1: Key Themes Of Biology” dataset_id=”Module_1_Flashcards|169fe4207dbc9b” question_number=”1″]Define biology.

Note that this wasn’t covered in the video but you have to learn this at some point!

[a]Biology is the science of life.

[!!!!]+++end of card data +++[/!!!!]
[!!!!]++card :record #A2208+++[/!!!!]
[q json=”true” unit = “U1: Course Themes; Evolution and Natural Selection” topic = “M1: Key Themes Of Biology” dataset_id=”Module_1_Flashcards|169fccd806d49b” question_number=”2″]What are the four key themes of biology?

[a]* Evolution
* Information Flow
* Matter and Energy Flow
* Systems (and system interactions)

[!!!!]+++end of card data +++[/!!!!]
[!!!!]++card :record #A2209+++[/!!!!]
[q json=”true” unit = “U1: Course Themes; Evolution and Natural Selection” topic = “M1: Key Themes Of Biology” dataset_id=”Module_1_Flashcards|169f974af5589b” question_number=”3″]Define evolution.

[a]Evolution is the process by which living things change over time.

[!!!!]+++end of card data +++[/!!!!]

[q json=”true” dataset_id=”Module_1_Flashcards|169f84aa96389b” question_number=”4″]What’s the name for a diagram like the one below that represents the evolutionary history of an organism?

[a]A phylogenetic tree

[q json=”true” dataset_id=”Module_1_Flashcards|169f84aa96389x” question_number=”4″]Based on the phylogenetic tree below, apples and crabapples have a _____________ ____________ __________ ___________ than apples and tulips. At the same time, all of the groups shown in this phylogenetic tree are (evolutionarily speaking) ___________.

[a]Based on the diagram below, apples and crabapples have a more recent common ancestor than apples and tulips. At the same time, all of the groups shown in this phylogenetic tree are (evolutionarily speaking) cousins. 

[!!!!]++card :record #A2210+++[/!!!!]
[q json=”true” unit = “U1: Course Themes; Evolution and Natural Selection” topic = “M1: Key Themes Of Biology” dataset_id=”Module_1_Flashcards|169f6d621f509b” question_number=”5″]DNA stores what kind of information?

[a]DNA stores genetic information.

[q json=”true” unit = “U1: Course Themes; Evolution and Natural Selection” topic = “M1: Key Themes Of Biology” dataset_id=”Module_1_Flashcards|169f586db44c9b” question_number=”6″]What are adaptations?

[a]Adaptations are structures or behaviors that increase an organism’s chance of surviving and/or reproducing.

[q]What are some of the adaptations seen in an apple?


  • The skin is an adaptation for attracting animals that will spread the seeds, and for protecting the flesh from bacteria and fungi.
  • The flesh is an adaptation for rewarding animals that eat the fruit and swallow the seeds.
  • The seeds are adapted for surviving passage through an animal’s gut, and then sprouting, allowing for seed dispersal.

[q json=”true” unit = “U1: Course Themes; Evolution and Natural Selection” topic = “M1: Key Themes Of Biology” dataset_id=”Module_1_Flashcards|169f41253d649b” question_number=”7″]Briefly describe how natural selection generates adaptations.

[a]At this point in our course, you should be able to explain natural selection as follows:
1) All populations have inherited (genetic) variations.
2) Unsuccessful variations (coding for poorly adapted traits) will be removed from a population, also removing the genes for those variations.
3) Genes for variations that are successful (coding for well-adapted traits) will be passed on to the next generation.
4) Repetition of this process over multiple generations in the same direction leads populations to become better adapted over time.

[q json=”true” dataset_id=”Module_1_Flashcards|169f2c30d2609b” question_number=”8″]Using this diagram, describe the flow in information within cells.

[a]Genetic information, stored as DNA, gets sent to ribosomes. Ribosomes translate the message into proteins, which determine the characteristics of cells and entire organisms.

[!!!!]+++end of card data +++[/!!!!]

[q json=”true” dataset_id=”Module_1_Flashcards|169f14e85b789b” question_number=”9″]Use this diagram to describe the flow of matter involved in photosynthesis.

[a]Photosynthesis is powered by light (1). During photosynthesis, water (3) is combined with carbon dioxide (2) to create the carbohydrates that make up the plant (4). Oxygen (5) is released as a waste product.

[q json=”true” dataset_id=”Module_1_Flashcards|169efff3f0749b” question_number=”10″]What happens during cellular respiration?

[a]During cellular respiration, organisms take the chemical energy in carbohydrates and combine it with oxygen. This gives organisms energy that they can use to power their life processes. Carbon dioxide and water vapor are released as waste products.

[q json=”true” dataset_id=”Module_1_Flashcards|169ee6576da89b” question_number=”11″]The way that energy and matter flow through the living world is quite different. Explain.

[a]Energy flows in one direction through the living world. It starts as useful energy that can power work. It ends up as heat, which dissipates into the environment. Matter, by contrast, is recycled.

[!!!!]++card :record #A2214+++[/!!!!]
[q json=”true” unit = “U1: Course Themes; Evolution and Natural Selection” topic = “M1: Key Themes Of Biology” dataset_id=”Module_1_Flashcards|169ec36abb4c9b” question_number=”12″]Define “system.”

[a]A system is “a set of connected things or parts that form a larger whole.”

[!!!!]+++end of card data +++[/!!!!]
[!!!!]++card :record #A2215+++[/!!!!]
[q json=”true” unit = “U1: Course Themes; Evolution and Natural Selection” topic = “M1: Key Themes Of Biology” dataset_id=”Module_1_Flashcards|169ddcea22209b” question_number=”13″]List and describe some key attributes of a system. Note that this was only briefly covered in the video (but you can learn it now).

[a]Systems (like cells or entire organisms) have boundaries, components (inner parts) inputs, processes, and outputs.


4b. Biology’s Four Big Ideas Quiz

[qwiz qrecord_id=”sciencemusicvideosMeister1961-Four Big Ideas Quiz (2.0)”]

[h]Biology’s Four Big Ideas


[q]The process by which living things change over time is [hangman]


[q]A diagram like the one below is called a [hangman] tree.


[q]Based on the phylogenetic tree below, the organism that’s most distantly related to an apple is a





[c]ZmVy bg==[Qq]


[q]The important message of the phylogenetic tree below is that all living things are, evolutionarily speaking, [hangman]. All living things are united by having a common [hangman]



[q]Structures that help an organism to survive and reproduce are known as [hangman].


[q]The process that results in adaptations is known as [hangman] [hangman]



[q]The most important molecule of heredity is [hangman]


[q]In the diagram below, the number 3 represents [hangman]. Number 7 is a particle called a [hangman]. Number 8 represents [hangman].




[q]Another way to describe evolution is as a change in genetic [hangman] carried within an organism’s [hangman] pool.



[q] The process that living things use to get energy from foods like carbohydrates is [hangman] [hangman]



[q]Whereas energy [hangman] through ecosystems and dissipates away as heat, matter endlessly gets [hangman].


[q]During cellular respiration, organisms take an organic fuel (often sugar) and chemically combine it with [hangman], making [hangman] available for cellular work. The waste products are the gas [hangman] [hangman] and water





[q]A group of connected things that combine to form a larger, integrated whole is known as a [hangman].


[q]While you might not know the details of the system below, you know that the things flowing in at 1, 3, and 5 can be described as [hangman], and the things flowing out at 2 and 4 can be described as [hangman].



[q]The diagram below represents the process of [hangman].





Next steps

  1. Properties of Living things (next tutorial in this module)
  2. AP Biology Course Introduction Main Menu