Contents

  1. Unit 3 Overview Video
  2. Learning Objectives
  3. Flashcards
  4. Multiple Choice Quiz 1
  5. Multiple Choice Quiz 2
  6. FRQs
  7. Quiz: Comparing Photosynthesis and Respiration
  8. Cellular Respiration Click-on Challenge
  9. Photosynthesis Click-on Challenge

Unit 3 Review Video

1. Unit 3 Learning Objectives

Topics 3.1 to 3.3: Enzymes

  1. Describe the key properties and function of enzymes. Include the nature and basis of enzyme specificity.
  2. Explain how changes in an enzyme’s shape affect the enzyme’s function. Connect this explanation to the idea of denaturation, and distinguish between reversible and irreversible denaturation.
  3. Explain the effect of moderate and extreme changes in temperature on enzyme activity
  4. Explain the effect of changes in pH or ion concentration on enzyme activity.
  5. Explain the effects of enzyme and substrate concentration on enzyme activity
  6. Explain the role of competitive and non-competitive inhibitors on enzyme activity
  7. Explain how cells can regulate enzyme activity through feedback inhibition and allosteric regulation.

Topic 3.4: Cell Energy

  1. Explain how living things create and maintain their complex order.
  2. Describe the energy input/output balance required for life to be maintained.
  3. Using the terms endergonic and exergonic, describe energy coupling.
  4. Describe the structure of ATP.
  5. Describe some common coupled reactions.
  6. Describe the ATP/ADP cycle.

Topic 3.5: Photosynthesis

  1. Describe the cellular location of the reactions of photosynthesis
  2. Describe key evolutionary milestones in the evolution of photosynthesis
  3. Explain the light reactions of photosynthesis
  4. Explain the key reactions of the Calvin cycle.

Topic 3.6: Cellular Respiration

  1. Explain the overall pathway of aerobic cellular respiration
  2. Explain what happens during glycolysis
  3. Explain what happens during the link reaction
  4. Explain the key reactions of the Krebs cycle
  5. Explain the roles of  NADH and FADH2 in cellular respiration
  6. Describe what happens in chemiosmosis
  7. Explain the role of oxygen in the electron transport chain.
  8. Compare and contrast lactic acid and alcohol fermentation.
  9. Connect the structure of the mitochondrion to the key processes of aerobic respiration
  10. Explain how the pathways of cellular respiration can be used for thermoregulation

2. Unit 3 Flashcards

[qdeck style=”min-height: 450px !important; width: 550px !important;” bold_text=”false” qrecord_id=”sciencemusicvideosMeister1961-Unit 3 Flashcards” dataset=”Unit 3 Cumulative Flashcards Dataset, v2.0″]

[h] Unit 3 Cumulative Flashcards

[i]

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e06fa5c91bb65″ question_number=”1″ topic=”3.1-3.Enzymes”] Describe the key properties shared by all enzymes.

[a] Enzymes are large molecules (usually proteins, but sometimes RNAs) that catalyze reactions in cells. They act to lower the activation energy of the reactions that they catalyze, greatly increasing the rate of these reactions. Enzymes are specific, and their specificity derives from the fact that they have an active site that has a shape and charge that complements the shape and charge of their substrate (the substance that an enzyme acts upon).

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e06e0c00eef65″ question_number=”2″ topic=”3.1-3.Enzymes”] Unlike inorganic catalysts, enzymes are both highly specific, and tend to have a narrow set of conditions where they can function at or near their optimum. Explain.

[a] Enzymes are proteins. Their shape involves secondary, tertiary, and quaternary level interactions, including hydrogen bonds, ionic bonds, and hydrophobic clustering. Changes in pH, temperature, or ion concentration interfere with these bonds, changing the shape of the active site, which can keep the enzyme from binding with its substrate. As a result, most enzymes have a pH, ionic, or temperature optimum at which the shape of their active site best fits their substrate. Changing this optimum causes denaturation: a change in the shape that lowers (or completely negates) the enzyme’s function.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e06c4cf803f65″ question_number=”3″ topic=”3.1-3.Enzymes”] Describe how enzyme activity is affected by changes in the pH of its environment. Include the concept of “denaturation” in your answer, and draw a sketch of the relation between pH and enzyme activity.

[a] Most enzymes have a pH optimum where they operate at peak efficiency. As the pH moves above or below the optimum, enzyme performance drops. A graph of enzyme efficiency plotted against pH shows a peak at the optimum, and then a drop-off at either side as the enzyme becomes denatured.

 

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” topic=”3.1-3.Enzymes” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e06a436d9c765″ question_number=”4″] Describe how enzyme activity is affected by changes in the temperature of enzyme’s environment. Include the concept of “denaturation” in your answer, and draw a sketch showing the relationship between temperature and enzyme activity.

[a] Up to a certain point, enzyme activity increases with temperature, because more kinetic energy increases molecular motion and increases the chance that the enzyme will bind with its substrate(s). At a certain temperature (beyond 2 in the graph), the enzyme denatures, reducing the enzyme’s catalytic abilities.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e0685f23f3365″ question_number=”5″ topic=”3.1-3.Enzymes”] What’s the difference between reversible and irreversible enzyme denaturation?

[a] In reversible denaturation, restoration of optimal conditions will restore the enzyme’s function as it regains its optimal shape. In irreversible denaturation, the enzyme’s shape is permanently changed, and its catalytic ability is destroyed.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e06655998bb65″ question_number=”6″ topic=”3.1-3.Enzymes”] Explain how enzyme activity is affected by substrate concentration.

[a] At low substrate concentrations, the probability of the enzyme meeting the substrate to catalyze the reaction is low, and the product will be produced at a low rate. As substrate concentration increases, the collision and the reaction rate will increase. Eventually, the saturation point is reached, and the reaction will reach a maximum rate.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e064714fe2765″ question_number=”7″ topic=”3.1-3.Enzymes”] Compare and contrast competitive and noncompetitive inhibition.

[a] In competitive inhibition (b), a “foreign” molecule (4) that’s not the enzyme’s substrate (1) blocks the enzyme’s active site (2). This keeps the substrate from binding, inhibiting the rate of the reaction. In non-competitive inhibition, a molecule  (6) binds away from the active site at a region called the allosteric site (5). Binding at the allosteric site has a ripple effect throughout the protein, causing a change in the shape of the active site which diminishes or blocks enzyme activity.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” topic=”3.1-3.Enzymes” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e0628d0639365″ question_number=”8″]Explain how cells can regulate enzyme activity through allosteric regulation.

[a]

In allosteric inhibition, a regulatory molecule (“4”) binds with an enzyme at an allosteric site. This changes the shape of the enzyme so that it can no longer bind with its substrate (5), turning the enzyme’s catalytic ability off.

In allosteric activation, a regulatory molecule (“7”) binds at an allosteric site. This has the effect of changing the enzyme’s active site so that it can bind with its substrate, turning the enzyme’s catalytic ability on.

[!]3.4.Cellular Energy[/!]

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e05e79f16a365″ question_number=”9″ topic=”3.4.Cell_Energy”] Explain why energy is essential to life.

[a] Living things are complex, highly organized systems. To generate and maintain that complexity, organisms require a constant flow of energy.

[q json=”true” unit=”3.Cellular_Energetics” topic=”3.4.Cell_Energy” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e05c00a4c7f65″ question_number=”10″] What is a metabolic pathway?

[a] A metabolic pathway is a linked series of enzyme-catalyzed chemical reactions occurring within a cell. The reactants, products, and intermediates of an enzymatic reaction are known as metabolites.

[q json=”true” unit=”3.Cellular_Energetics” topic=”3.4.Cell_Energy” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e05424fca6765″ question_number=”11″] What’s the difference between an exergonic reaction and an endergonic reaction.

[a] Exergonic reactions  (1) release energy and increase entropy. Examples include cellular respiration and most hydrolysis reactions. Endergonic reactions (2) require energy and decrease entropy. Examples include photosynthesis or almost any dehydration synthesis reaction.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e051f63180b65″ question_number=”12″ topic=”3.4.Cell_Energy”] Explain how energy capture and use are organized in living systems. List some examples.

[a] Living things channel flows of free energy into metabolic pathways. Within these metabolic pathways, energy is harvested or expended in many small, connected steps in which the product of one reaction becomes the reactant for the next reaction.

Specific examples of these metabolic pathways include the reactions of glycolysis, the Krebs cycle, the electron transport chains of cellular respiration, the light reactions of photosynthesis, and the Calvin Cycle.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” topic=”3.4.Cell_Energy” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e05011e7d7765″ question_number=”13″] Describe the structure and function of ATP.

[a] ATP consists of the 5-carbon sugar ribose (1), the nitrogenous base adenine (2), and 3 phosphate groups (3). ATP is used to power work within cells. Every cell makes its own ATP, and there’s no sharing of ATP between cells.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” topic=”3.4.Cell_Energy” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e04e085d6ff65″ question_number=”14″] Describe how ATP can be used to store and release energy.

[a] For temporary storage of energy, cells take energy from food (during cellular respiration) or light (during photosynthesis) and use it to make ATP from ADP and Pi. To release energy to perform cellular work, cells remove a phosphate group from ATP, creating ADP and Pi.

Note that in bacteria and archaea, other energy sources are used, but that’s beyond the scope of an AP Bio course.

[q json=”true” yy=”5″ unit=”3.Cellular_Energetics” topic=”3.4.Cell_Energy” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e04c495484f65″ question_number=”15″] What is energy coupling?

[a]Energy coupling involves linking an exergonic reaction to an endergonic one (which provides the energy to drive the endergonic reaction forward). For example, cellular respiration (which is exergonic) drives the formation of ATP from ADP and Pi (which is endergonic). The exergonic conversion of ATP and ADP and Pi is coupled to endergonic processes such as muscle contraction or dehydration synthesis reactions.

 

[!]3.5.Photosynthesis[/!]

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e04a3fca1d765″ question_number=”16″ topic=”3.5.Photosynthesis”] Connect the structure of chloroplasts to the reactions of photosynthesis.

[a]  Chloroplasts have internal membrane-bound sacs called thylakoids (4) which contain the membrane-bound photosystems and chlorophyll pigments for the light reactions of photosynthesis. The thylakoids are organized into stacks called grana. Surrounding the grana is a fluid called stroma (6) which is where the carbon-fixing reactions of the Calvin cycle occur.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e04880c132765″ question_number=”17″ topic=”3.5.Photosynthesis”] On a big picture level, what happens during photosynthesis?

[a] During photosynthesis, free energy from light is coupled to the endergonic synthesis of organic compounds. In the type of photosynthesis that happens in plants, algae, and Cyanobacteria, carbon dioxide is combined with water to create carbohydrates, with oxygen released as a byproduct. As a redox reaction, photosynthesis oxidizes water and reduces carbon dioxide.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” topic=”3.5.Photosynthesis” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e0469c7789365″ question_number=”18″] When did photosynthesis first evolve?

[a] Photosynthesis evolved relatively early in the history of life — as early as 3.5 billion years ago. There is fossil evidence of microscopic cells that look like modern Cyanobacteria (photosynthetic bacteria), and which have left chemical traces indicating that they were converting carbon dioxide into organic matter.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” topic=”3.5.Photosynthesis” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e044dd6e9e365″ question_number=”19″] What’s the chemical equation for photosynthesis? Is this reaction endergonic or exergonic?

[a] The chemical equation for photosynthesis is

6CO2 + 6H2O + light energy –> C6H12O6 + 6O2

The reaction is endergonic. It takes two low-energy inputs (CO2 and  H2O) and converts them into a high-energy product (glucose, C6H12O6). It also reduces entropy: 12 molecules on the reactant side are organized into 7 molecules on the product side.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e042f924f4f65″ question_number=”20″ topic=”3.5.Photosynthesis”] The evolution of photosynthesis had Earth-changing consequences. What were they?

[a] The first photosynthesizers (cyanobacteria) transformed the Earth by releasing free oxygen (O2) into the environment. The availability of oxygen set the stage for aerobic metabolism. Photosynthesis is also responsible for the formation of Earth’s oxygen-rich atmosphere, which led to the ozone layer that made life on land possible (starting about 400 million years ago).

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e04114db4bb65″ question_number=”21″ topic=”3.5.Photosynthesis”] Where do the light-dependent reactions of photosynthesis occur? What do these reactions produce?

[a] The light-dependent reactions convert the energy in light into the chemical energy of NADPH and ATP. These reactions occur in two photosystems that are located in the thylakoid membranes within chloroplasts (and similar structures in Cyanobacteria). Water supplies the electrons for the reduction of NADP+ into NADPH, and oxygen is a waste product.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” topic=”3.5.Photosynthesis” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e03f55d260b65″ question_number=”22″] Describe the energy transformations involved in photosynthesis.

[a] Photosynthesis starts with the conversion of light energy into a flow of electrons. This flow of electrons powers the creation of ATP from ADP and Pi, and the reduction of NADPH from NADP+. Then, in the Calvin Cycle, the chemical energy in ATP and NADPH is used to convert carbon dioxide into carbohydrates. So, light energy is transformed into electricity, which is transferred to short-term chemical energy (ATP and NADPH) within the chloroplast, which is transformed into long-term chemical energy (glucose) that can be used throughout the cell and transferred to other cells.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e03d4c47f9365″ question_number=”23″ topic=”3.5.Photosynthesis”] Describe how the light reactions of photosynthesis create ATP.

[a] Photoexcitation of chlorophyll in PS II starts a flow of electrons (b) along an electron transport chain in the thylakoid membrane. This powers proton pumping from the stroma (1) to the thylakoid space (2). This creates a chemiosmotic gradient that powers ATP synthesis as protons diffuse from the thylakoid space back to the stroma via an ATP synthase channel (i). Splitting of water by PS II (k) releases additional protons into the thylakoid space, enhancing the proton gradient for ATP creation.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” topic=”3.5.Photosynthesis” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e03b42bd91b65″ question_number=”24″] The Calvin cycle involves the reduction of CO2 into carbohydrate. Describe how the light reactions create reducing power that can be used in the Calvin Cycle.

[a] Photoexcitation of chlorophylls in Photosystem I, which follows Photosystem II,  creates electron flow along the electron transport chain of PS I (f). These electrons flow to the enzyme NADP+ reductase, which reduces NADP+ into NADPH (at g). During the Calvin Cycle, NADPH provides the electrons and hydrogens to reduce CO2 to carbohydrates.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” topic=”3.5.Photosynthesis” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e0395e73e8765″ question_number=”25″] The Z scheme is a kind of graphical shorthand of non-cyclic electron flow during the light reactions of photosynthesis. Create an illustrated sketch of the Z-scheme that shows the key processes in the light reactions.

[a] a. PS II antenna complex; b. light; c. reaction center; d. splitting water; e. photoexcitation; f. ETC of PS II; g. ADP and Pi; h. ATP, i. photoexcitation; j. ETC of PS I, K. NADP+, l. NADP+ reductase; m. NADPH, o. PS I antenna complex; p. PS I reaction center.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e03754e980f65″ question_number=”26″ topic=”3.5.Photosynthesis”] Where does the Calvin cycle occur, what does it produce, and how?

[a] The Calvin  Cycle occurs in the stroma (the fluid in between the thylakoids and the chloroplasts’ inner membrane). Using the products of the light reactions (ATP and NADPH) and carbon dioxide, the cycle creates the reduced 3-carbon compound G3P, which is converted by other enzymes into carbohydrates (or anything else a plant cell needs).

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e0354b5f19765″ question_number=”27″ topic=”3.5.Photosynthesis”] List the three phases of the Calvin cycle.

[a]

  1. Carbon fixation phase
  2. Energy investment and harvest
  3. Regeneration of RuBP

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” topic=”3.5.Photosynthesis” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e0315d8b08b65″ question_number=”28″] Describe what happens during the carbon fixation phase of the Calvin cycle.

[a] During the carbon fixation phase, carbon dioxide is combined with a five-carbon molecule called RuBP. This reaction is catalyzed by the enzyme RuBisCo. The six-carbon product of this reaction immediately dissociates into two 3 carbon molecules.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” topic=”3.5.Photosynthesis” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e02d4a7639b65″ question_number=”29″] Describe what happens during the energy investment and harvest phase of the Calvin cycle.

[a] During investment and harvest (II), the three-carbon products (b) of carbon fixation are reduced and phosphorylated into six molecules of glyceraldehyde-3-phosphate  (d: AKA G3P or PGAL). The energy comes from the ATP and NADPH from the light reactions. One of these G3Ps is then harvested (removed from the cycle).

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” topic=”3.5.Photosynthesis” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e02bb0ae0cf65″ question_number=”30″] Describe what happens during last phase of the Calvin cycle.

[a] The last phase is the regeneration of RuBP. During this phase, the remaining five G3Ps are rearranged into three 5-carbon RuBPs, the compound that acts as one of the substrates during the carbon fixation phase (the other substrate being carbon dioxide).

[!]3.6.Respiration[/!]

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e02a16e5e0365″ question_number=”31″ topic=”3.6.Cellular_Respiration”] Connect the structure and function of mitochondria to cellular respiration and ATP synthesis.

[a] Mitochondria are double-membraned organelles. The highly folded inner membrane (2) increases the surface area for the membrane-embedded proteins that make up the mitochondrial electron transport chain, as well as the ATP synthase channel. The intermembrane space provides a compartment into which protons can be pumped, creating the chemiosmotic gradient that powers ATP synthesis.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e0287d1db3765″ question_number=”32″ topic=”3.6.Cellular_Respiration”] When oxygen is present, cellular respiration happens in four phases. List each one, and describe its location.

[a]

Glycolysis occurs in the cytoplasm (3). The link reaction happens as pyruvic acid diffuses into the mitochondria (4). The Krebs cycle occurs in the mitochondrial matrix (5). The electron transport chain occurs along the inner mitochondrial membrane (6).

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” topic=”3.6.Cellular_Respiration” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e02673934bf65″ question_number=”33″] Briefly describe what happens in each phase of cellular respiration.

[a] 1) Glycolysis: Uses chemical energy in glucose to generate ATP and NADH. The end product is 3-carbon pyruvic acid. 2) Link reaction: brings pyruvic acid into the mitochondria, converting it into Acetyl CoA, generating NADH, and releasing one CO2. 3) Krebs cycle: uses energy from the oxidation of Acetyl CoA to produce 3 NADH,  1 ATP, and 1 FADH2 while releasing two molecules of CO2. 4) Electron transport chain (ETC): oxidizes NADH and FADH2, using the resulting electron flow to power the creation of ATP.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e0248f49a2b65″ question_number=”34″ topic=”3.6.Cellular_Respiration”] Explain how the mitochondrial electron transport chain generates ATP.

[a]

The ETC  starts by oxidizing electrons from NADH and FADH2 (1 and 4). The liberated electrons flow through a series of membrane-embedded proteins on the mitochondrial inner membrane. Some of these (3) pump protons from the matrix (E) to the intermembrane space (C), creating an electrochemical gradient. Facilitated diffusion through the ATP synthase channel back to the the matrix powers formation of ATP from ADP and Pi.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e022d040b7b65″ question_number=”35″ topic=”3.6.Cellular_Respiration”] Cellular respiration can be used to generate heat instead of ATP. Explain.

[a] During non-shivering thermogenesis, the flow of electrons along the ETC generates heat: just imagine electricity flowing through the high resistance wires in a toaster, and you’ll have the idea.

Newborn and hibernating mammals have brown fat, the cells of which are dense with mitochondria (which is why it’s brown). When the animal needs to generate body heat, hormonal signals induce a proton channel called thermogenin to form in the inner mitochondrial membrane. This channel lets protons diffuse back to the matrix from the intermembrane space without passing through ATP synthase.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e0211137ccb65″ question_number=”36″ topic=”3.6.Cellular_Respiration”] What happens during glycolysis? Include cellular locations, inputs, and outputs in your answer.

[a] The starting substrate is glucose. In a series of enzyme-catalyzed reactions, glucose is phosphorylated (investment phase), then split into two molecules of G3P (cleavage phase). Then G3P is oxidized, which provides the electrons needed to reduce NAD+ to NADH. Other enzymes use the chemical energy in G3P to power substrate-level phosphorylation of two ATPs from ADP and Pi. The net yield of glycolysis is 2 ATPs and 2 NADH. The process ends with two molecules of the 3-carbon molecule pyruvate (also known as pyruvic acid).

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” topic=”3.6.Cellular_Respiration” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e01f522ee1b65″ question_number=”37″] Glycolysis occurs in 3 phases. What are they?

[a] Investment, cleavage, and energy harvest.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e01db866b4f65″ question_number=”38″ topic=”3.6.Cellular_Respiration”] What happens after glycolysis if oxygen is not present?

[a] If oxygen is not present, pyruvic acid generated during glycolysis is fermented. This involves chemically reducing pyruvate by oxidizing NADH (a key product of glycolysis) back to NAD+. Why? Because the two ATPs generated by glycolysis are better than none. NAD+ is a required substrate for glycolysis, and its regeneration enables glycolysis to continue to create ATP (even in the absence of oxygen).

In lactic acid fermentation, lactic acid (a 3-carbon molecule) is produced. In alcohol fermentation, pyruvate is decarboxylated (loses a carboxyl group) and reduced, producing ethanol (the two-carbon alcohol in wine, beer, and spirits) and carbon dioxide.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e01c1e9e88365″ question_number=”39″ topic=”3.6.Cellular_Respiration”] What happens between glycolysis and the Krebs cycle?

[a] During the link reaction, pyruvic acid (from glycolysis, at A) is transported across the outer and inner mitochondrial membranes (B) into the mitochondrial matrix. In the matrix, an enzyme removes a carbon dioxide. Other enzymes oxidize the resulting two-carbon molecule, powering the reduction of NAD+ to NADH (2). The two-carbon acetyl group that results is attached to coenzyme A, generating Acetyl-CoA (at “D”), the starting point for the Krebs cycle.

 

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e01a3a54def65″ question_number=”40″ topic=”3.6.Cellular_Respiration”] What comes into the Krebs Cycle? What comes out? What are these products used for?

[a] During the Krebs cycle, energy from food, brought into the cycle in the form of acetyl-CoA, is used to generate ATP from ADP and inorganic phosphate, and to chemically reduce the electron carriers NAD+ and FADH to NADH and FADH2. These electron carriers will later power the electron transport chain’s conversion of ADP and inorganic phosphate to ATP through chemiosmosis.

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e018a08cb2365″ question_number=”41″ topic=”3.6.Cellular_Respiration”] Describe the Krebs cycle.

[a] The cycle starts as enzymes (at 1) transfer the two-carbon acetyl group from Acetyl-CoA to oxalic acid, a four-carbon molecule. This creates six-carbon citric acid. In subsequent reactions, citric acid is oxidized, and its electrons are used to reduce the electron carriers NAD+ and FADH to NADH and FADH2. Other reactions power the substrate-level phosphorylation of ADP and Pi into ATP.

For each acetyl-CoA that enters the cycle, one ATP, one FADH2, and three NADHs are generated. As this occurs, carbon dioxide is released as a waste product (accounting for 2/3 of the CO2 produced during cellular respiration).

[q json=”true” yy=”4″ unit=”3.Cellular_Energetics” dataset_id=”Unit 3 Cumulative Flashcards Dataset, v2.0|1e01697024ab65″ question_number=”42″ topic=”3.6.Cellular_Respiration”] How is ATP generation in mitochondria and chloroplasts similar.

[a] Both mitochondria and chloroplasts generate ATP through chemiosmosis. Both use electron energy to pump protons into an enclosed compartment. Both use facilitated diffusion of protons through ATP synthase to power the formation of ATP.
[/qdeck]


3. Unit 3 Multiple Choice Quiz 1

[qwiz style=”min-height: 450px !important; width: 550px !important;” qrecord_id=”sciencemusicvideosMeister1961-Unit 3 Summative Quiz” dataset=”Unit 3 Cumulative Multiple Choice Dataset, v2.0″]

[h] Unit 3 Multiple-Choice Quiz 1

[i]

[q json=”true” xyz=”2″ multiple_choice=”true” unit=”3.Cellular Energetics” dataset_id=”Unit 3 Cumulative Multiple Choice Dataset, v2.0|1be16a735a2814″ question_number=”1″ topic=”3.1-2.Enzyme_Structure_and_Function”] Almost all enzymes are

[c]IGNhcmJvaHlkcmF0ZXMu[Qq]

[f]IE5vLiBIZXJlJiM4MjE3O3MgYSBoaW50LiBUaGUgbW9ub21lcnMgbWFraW5nIHVwIG1vc3QgZW56eW1lcyBhcmUgYW1pbm8gYWNpZHMu[Qq]

[c]IGxpcGlkcw==[Qq]

[f]IE5vLiBIZXJlJiM4MjE3O3MgYSBoaW50LiBUaGUgbW9ub21lcnMgbWFraW5nIHVwIG1vc3QgZW56eW1lcyBhcmUgYW1pbm8gYWNpZHMu[Qq]

[c]IHByb3 RlaW5z[Qq]

[f]IEV4Y2VsbGVudC4gQWxtb3N0IGFsbCBlbnp5bWVzIGFyZSBwcm90ZWlucy4gVGhlIGV4Y2VwdGlvbnMgYXJlIGEgZmV3IChleHRyZW1lbHkgaW1wb3J0YW50KSBSTkEgZW56eW1lcyAobGlrZSB0aGUgUk5BIGluIGEgcmlib3NvbWUsIHdoaWNoIGlzIHdoYXQgY2F0YWx5emVzIHRoZSByZWFjdGlvbnMgb2YgcHJvdGVpbiBzeW50aGVzaXMp[Qq]

[c]IG51Y2xlaWMgYWNpZHM=[Qq]

[f]IE5vLCBidXQgeW91IG1hZGUgdGhlIHNlY29uZC1iZXN0IGNob2ljZS4gSXQmIzgyMTc7cyB0cnVlIHRoYXQgYSBmZXcsIGV4dHJlbWVseSBpbXBvcnRhbnQgZW56eW1lcyBhcmUgY29tcG9zZWQgb2YgbnVjbGVpYyBhY2lkcyAobGlrZSB0aGUgUk5BIGluIGEgcmlib3NvbWUsIHdoaWNoIGlzIHdoYXQgY2F0YWx5emVzIHRoZSByZWFjdGlvbnMgb2YgcHJvdGVpbiBzeW50aGVzaXMpLiBCdXQgbW9zdCBlbnp5bWVzIGFyZSBtYWRlIG9mIHNvbWV0aGluZyBlbHNlLiBIZXJlJiM4MjE3O3MgYSBoaW50LiBUaGUgbW9ub21lcnMgbWFraW5nIHVwIG1vc3QgZW56eW1lcyBhcmUgYW1pbm8gYWNpZHMu

Cg==

[Qq]

[q json=”true” xyz=”2″ multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.1-2.Enzyme_Structure_and_Function” dataset_id=”Unit 3 Cumulative Multiple Choice Dataset, v2.0|1be1557eef2414″ question_number=”2″] The diagram below shows the enzyme-catalyzed breakdown of sucrose into glucose and fructose by the enzyme sucrase. Which diagram depicts the enzyme when it fits the substrate best?

[c]IEk=[Qq]

[f]IE5vLiBUaGlzIHF1ZXN0aW9uIGlzIGFib3V0IHRoZSBpbmR1Y2VkIGZpdCBtb2RlbCBvZiBlbnp5bWUgYWN0aW9uLiBCYXNlZCBvbiB0aGF0IG1vZGVsLCB0aGUgYmluZGluZyBvZiB0aGUgZW56eW1lIHdpdGggdGhlIHN1YnN0cmF0ZSBjYXVzZXMgYSBjb25mb3JtYXRpb25hbCBjaGFuZ2UgaW4gdGhlIGVuenltZSBpbiBhIHdheSB0aGF0IG1heGltaXplcyB0aGUgZW56eW1lLXN1YnN0cmF0ZSBmaXQuIE9mIHRoZSBjaG9pY2VzIGFib3ZlLCB3aGVyZSB3b3VsZCB0aGF0IGJlIGhhcHBlbmluZz8=[Qq]

[c]IE lJ[Qq]

[f]IFllcy4gQWNjb3JkaW5nIHRvIHRoZSBpbmR1Y2VkIGZpdCBtb2RlbCwgdGhlIGJpbmRpbmcgb2YgdGhlIGVuenltZSB3aXRoIHRoZSBzdWJzdHJhdGUgY2F1c2VzIGEgY29uZm9ybWF0aW9uYWwgY2hhbmdlIGluIHRoZSBlbnp5bWUgaW4gYSB3YXkgdGhhdCBtYXhpbWl6ZXMgdGhlIGVuenltZS1zdWJzdHJhdGUgZml0LiBUaGF0JiM4MjE3O3Mgd2hhdCB5b3Ugc2VlIGluIElJLg==[Qq]

[c]IElJSQ==[Qq]

[f]IE5vLiBUaGlzIHF1ZXN0aW9uIGlzIGFib3V0IHRoZSBpbmR1Y2VkIGZpdCBtb2RlbCBvZiBlbnp5bWUgYWN0aW9uLiBCYXNlZCBvbiB0aGF0IG1vZGVsLCB0aGUgYmluZGluZyBvZiB0aGUgZW56eW1lIHdpdGggdGhlIHN1YnN0cmF0ZSBjYXVzZXMgYSBjb25mb3JtYXRpb25hbCBjaGFuZ2UgaW4gdGhlIGVuenltZSBpbiBhIHdheSB0aGF0IG1heGltaXplcyB0aGUgZW56eW1lLXN1YnN0cmF0ZSBmaXQuIE9mIHRoZSBjaG9pY2VzIGFib3ZlLCB3aGVyZSB3b3VsZCB0aGF0IGJlIGhhcHBlbmluZz8=[Qq]

[c]IEFsbCB0aHJlZSBzdGFnZXMgZml0IHN1Y3Jvc2UgcGVyZmVjdGx5Lg==[Qq]

[f]IE5vLiBUaGlzIHF1ZXN0aW9uIGlzIGFib3V0IHRoZSBpbmR1Y2VkIGZpdCBtb2RlbCBvZiBlbnp5bWUgYWN0aW9uLiBCYXNlZCBvbiB0aGF0IG1vZGVsLCB0aGUgYmluZGluZyBvZiB0aGUgZW56eW1lIHdpdGggdGhlIHN1YnN0cmF0ZSBjYXVzZXMgYSBjb25mb3JtYXRpb25hbCBjaGFuZ2UgaW4gdGhlIGVuenltZSBpbiBhIHdheSB0aGF0IG1heGltaXplcyB0aGUgZW56eW1lLXN1YnN0cmF0ZSBmaXQuIE9mIHRoZSBjaG9pY2VzIGFib3ZlLCB3aGVyZSB3b3VsZCB0aGF0IGJlIGhhcHBlbmluZz8=

Cg==

[Qq]

[q json=”true” multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.3.Environmental_Impacts_on_Enzyme_Function” dataset_id=”Unit 3 Cumulative Multiple Choice Dataset, v2.0|1be1408a842014″ question_number=”3″] When SARS-CoV-2 infects a cell (as shown below), it uses an enzyme called RNA replicase to synthesize copies of its RNA genome. Scientists studying the antiviral drug Remdesivir are speculating that the drug works by binding with RNA replicase’s active site, preventing RNA replicase from binding with RNA.

RNA replicase is represented by letter “F” above. Based on the scientists’ speculations, Remdesivir works through

[c]IGRlbmF0dXJhdGlvbg==[Qq]

[f]IE5vLiBEZW5hdHVyYXRpb24gaW52b2x2ZXMgZW52aXJvbm1lbnRhbCBpbmZsdWVuY2VzIHRoYXQgY2hhbmdlIGFuIGVuenltZSYjODIxNztzIHNoYXBlIHNvIHRoYXQgaXQgY2FuIG5vIGxvbmdlciBiaW5kIHdpdGggaXRzIHN1YnN0cmF0ZS4gV2hpbGUgUmVtZGVzaXZpciBzZWVtcyB0byBiZSBwcmV2ZW50aW5nIFJOQSByZXBsaWNhc2UgYnkgYmluZGluZyB3aXRoIGl0cyBzdWJzdHJhdGUsIGl0JiM4MjE3O3Mgbm90IHRocm91Z2ggZGVuYXR1cmF0aW9uLg==[Qq]

[c]IGFsbG9zdGVyaWMgaW5oaWJpdGlvbg==[Qq]

[f]IE5vLiBJbiBhbGxvc3RlcmljIGluaGliaXRpb24sIGEgbW9sZWN1bGUgYmluZHMgd2l0aCBhbiBlbnp5bWUgaW4gYSB3YXkgdGhhdCBjaGFuZ2VzIHRoZSBlbnp5bWUmIzgyMTc7cyBhY3RpdmUgc2l0ZS4gSG93ZXZlciwgdGhlIGJpbmRpbmcgc2l0ZSBpcyBvbiBhbm90aGVyIHBhcnQgb2YgdGhlIGVuenltZSAobm90IHRoZSBhY3RpdmUgc2l0ZSkuIEZvciBleGFtcGxlLCBpbiB0aGUgZGlhZ3JhbSBiZWxvdywgJiM4MjIwO2MmIzgyMjE7IHNob3dzIGFsbG9zdGVyaWMgaW5oaWJpdGlvbi4gUmVtZGVzaXZpciYjODIxNztzIG1vZGUgb2YgYWN0aW9uIGlzIGxpa2UgJiM4MjIwO2ImIzgyMjE7IGJlbG93LiBXaGF0JiM4MjE3O3MgdGhhdCBjYWxsZWQ/

Cg==

[Qq]

[c]IGNvbXBldGl0aXZl IGluaGliaXRpb24=[Qq]

[f]IE5pY2Ugam9iLiBUaGUgc2NpZW50aXN0cyBhcmUgc3BlY3VsYXRpbmcgdGhhdCBSZW1kZXNpdmlyIGlzIGFjdGluZyBieSBjb21wZXRpdGl2ZSBpbmhpYml0aW9uLCBzaG93biBpbiAmIzgyMjA7YiYjODIyMTsgYmVsb3cu

Cg==

[Qq]

[c]IGltbXVuZSBzeXN0ZW0gYWN0aXZhdGlvbg==[Qq]

[f]IE5vLiBWYWNjaW5lcyB3b3JrIGJ5IGltbXVuZSBzeXN0ZW0gYWN0aXZhdGlvbi4gSGVyZSYjODIxNztzIGEgaGludDogdGhlIHNjaWVudGlzdHMgYXJlIHNwZWN1bGF0aW5nIHRoYXRSZW1kZXNpdmlyJiM4MjE3O3MgbW9kZSBvZiBhY3Rpb24gaXMgbGlrZSAmIzgyMjA7YiYjODIyMTsgYmVsb3cuIFdoYXQmIzgyMTc7cyB0aGF0IGNhbGxlZD8=

Cg==

Cg==

[Qq]

[q json=”true” multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.3.Environmental_Impacts_on_Enzyme_Function” dataset_id=”Unit 3 Cumulative Multiple Choice Dataset, v2.0|1be12b96191c14″ question_number=”4″] A team of students is testing the effect of changes in pH on the function of an enzyme. During their experiment, they plan to use a base and an acid to increase or decrease the pH of a solution, then add the enzyme and substrate to the solution and measure the amount of product formed after a set time interval.

Which of the following graphs will most likely represent their results?

[c]IDEg[Qq][c]IDIg[Qq][c]ID Mg[Qq][c]IDQ=

Cg==[Qq]

[f]IE5vLiBIZXJlJiM4MjE3O3MgYSBoaW50LiBNb3N0IGVuenltZXMgaGF2ZSBhIHBIIG9wdGltdW0sIGEgcEggYXQgd2hpY2ggZW56eW1lIGFjdGl2aXR5IHdpbGwgYmUgaGlnaGVzdC4gQWJvdmUgYW5kIGJlbG93IHRoaXMgb3B0aW11bSwgZW56eW1lIGFjdGl2aXR5IGRlY2xpbmVzLiBXaGljaCBncmFwaCBmaXRzIHRoYXQgZGVzY3JpcHRpb24/[Qq]

[f]IE5vLiBHcmFwaCAyIHNob3dzIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiB0ZW1wZXJhdHVyZSBhbmQgZW56eW1lIGFjdGl2aXR5Lg==

Cg==

SGVyZSYjODIxNztzIGEgaGludC4gTW9zdCBlbnp5bWVzIGhhdmUgYSBwSCBvcHRpbXVtLCBhIHBIIGF0IHdoaWNoIGVuenltZSBhY3Rpdml0eSB3aWxsIGJlIGhpZ2hlc3QuIEFib3ZlIGFuZCBiZWxvdyB0aGlzIG9wdGltdW0sIGVuenltZSBhY3Rpdml0eSBkZWNsaW5lcy4gV2hpY2ggZ3JhcGggZml0cyB0aGF0IGRlc2NyaXB0aW9uPw==[Qq]

[f]IEV4Y2VsbGVudC4gQXMgc2hvd24gaW4gR3JhcGggMywgbW9zdCBlbnp5bWVzIGhhdmUgYSBwSCBvcHRpbXVtLCBhIHBIIGF0IHdoaWNoIGVuenltZSBhY3Rpdml0eSB3aWxsIGJlIGhpZ2hlc3QuIEFib3ZlIGFuZCBiZWxvdyB0aGlzIG9wdGltdW0sIGVuenltZSBhY3Rpdml0eSBkZWNsaW5lcy4=[Qq]

[f]IE5vLiBHcmFwaCA0IHNob3dzIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiBzdWJzdHJhdGUgY29uY2VudHJhdGlvbiBhbmQgZW56eW1lIGFjdGl2aXR5Lg==

Cg==

SGVyZSYjODIxNztzIGEgaGludC4gTW9zdCBlbnp5bWVzIGhhdmUgYSBwSCBvcHRpbXVtLCBhIHBIIGF0IHdoaWNoIGVuenltZSBhY3Rpdml0eSB3aWxsIGJlIGhpZ2hlc3QuIEFib3ZlIGFuZCBiZWxvdyB0aGlzIG9wdGltdW0sIGVuenltZSBhY3Rpdml0eSBkZWNsaW5lcy4gV2hpY2ggZ3JhcGggZml0cyB0aGF0IGRlc2NyaXB0aW9uPw==

Cg==

[Qq]

[q json=”true” multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.3.Environmental_Impacts_on_Enzyme_Function” dataset_id=”Unit 3 Cumulative Multiple Choice Dataset, v2.0|1be116a1ae1814″ question_number=”5″] Which of the graphs below best represents the relationship between substrate concentration and enzyme activity?

Which of the following graphs will most likely represent their results?

[c]IDEg[Qq][c]IDIg[Qq][c]IDMg[Qq][c]ID Q=

Cg==[Qq]

[f]IE5vLiBGb3IgbW9zdCBlbnp5bWVzLCBlbnp5bWUgYWN0aXZpdHkgaW5jcmVhc2VzIHdpdGggaW5jcmVhc2luZyBzdWJzdHJhdGUgY29uY2VudHJhdGlvbiB1bnRpbCB0aGVyZSYjODIxNztzIHNvIG11Y2ggc3Vic3RyYXRlIHRoYXQgYWxsIG9mIHRoZSBlbnp5bWVzIGhhdmUgdGhlaXIgYWN0aXZlIHNpdGVzIGZpbGxlZC4gQXQgdGhhdCBwb2ludCwgdGhlIHJhdGUgb2YgZW56eW1lIGFjdGl2aXR5IGNhbiBubyBsb25nZXIgcmlzZSwgY2F1c2luZyB0aGUgY3VydmUgdG8gZmxhdHRlbiBvdXQuIFdoaWNoIGdyYXBoIGZpdHMgdGhhdCBkZXNjcmlwdGlvbj8=[Qq]

[f]IE5vLiBHcmFwaCAyIHNob3dzIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiBlbnp5bWUgYWN0aXZpdHkgYW5kIHRlbXBlcmF0dXJlLg==

Cg==

SGVyZSYjODIxNztzIGEgaGludDogRm9yIG1vc3QgZW56eW1lcywgZW56eW1lIGFjdGl2aXR5IGluY3JlYXNlcyB3aXRoIGluY3JlYXNpbmcgc3Vic3RyYXRlIGNvbmNlbnRyYXRpb24gdW50aWwgdGhlcmUmIzgyMTc7cyBzbyBtdWNoIHN1YnN0cmF0ZSB0aGF0IGFsbCBvZiB0aGUgZW56eW1lcyBoYXZlIHRoZWlyIGFjdGl2ZSBzaXRlcyBmaWxsZWQuIEF0IHRoYXQgcG9pbnQsIHRoZSByYXRlIG9mIGVuenltZSBhY3Rpdml0eSBjYW4gbm8gbG9uZ2VyIHJpc2UsIGNhdXNpbmcgdGhlIGN1cnZlIHRvIGZsYXR0ZW4gb3V0LiBXaGljaCBncmFwaCBmaXRzIHRoYXQgZGVzY3JpcHRpb24/[Qq]

[f]IE5vLiBHcmFwaCAzIHNob3dzIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiBlbnp5bWUgYWN0aXZpdHkgYW5kIHBILg==

Cg==

SGVyZSYjODIxNztzIGEgaGludDogRm9yIG1vc3QgZW56eW1lcywgZW56eW1lIGFjdGl2aXR5IGluY3JlYXNlcyB3aXRoIGluY3JlYXNpbmcgc3Vic3RyYXRlIGNvbmNlbnRyYXRpb24gdW50aWwgdGhlcmUmIzgyMTc7cyBzbyBtdWNoIHN1YnN0cmF0ZSB0aGF0IGFsbCBvZiB0aGUgZW56eW1lcyBoYXZlIHRoZWlyIGFjdGl2ZSBzaXRlcyBmaWxsZWQuIEF0IHRoYXQgcG9pbnQsIHRoZSByYXRlIG9mIGVuenltZSBhY3Rpdml0eSBjYW4gbm8gbG9uZ2VyIHJpc2UsIGNhdXNpbmcgdGhlIGN1cnZlIHRvIGZsYXR0ZW4gb3V0LiBXaGljaCBncmFwaCBmaXRzIHRoYXQgZGVzY3JpcHRpb24/[Qq]

[f]IEdvb2Qgd29yay4gQXMgR3JhcGggNCBzaG93cywgZm9yIG1vc3QgZW56eW1lcywgZW56eW1lIGFjdGl2aXR5IGluY3JlYXNlcyB3aXRoIGluY3JlYXNpbmcgc3Vic3RyYXRlIGNvbmNlbnRyYXRpb24gdW50aWwgdGhlcmUmIzgyMTc7cyBzbyBtdWNoIHN1YnN0cmF0ZSB0aGF0IGFsbCBvZiB0aGUgZW56eW1lcyBoYXZlIHRoZWlyIGFjdGl2ZSBzaXRlcyBmaWxsZWQuIEF0IHRoYXQgcG9pbnQsIHRoZSByYXRlIG9mIGVuenltZSBhY3Rpdml0eSBjYW4gbm8gbG9uZ2VyIHJpc2UsIGNhdXNpbmcgdGhlIGN1cnZlIHRvIGZsYXR0ZW4gb3V0Lg==

Cg==

Cg==

[Qq]

[q json=”true” multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.4.Cellular_Energy” dataset_id=”Unit 3 Cumulative Multiple Choice Dataset, v2.0|1be0ff59373014″ question_number=”6″] The graphs below show the energy changes in two reactions. Which of the following statements is correct about these reactions?

[c]IHJlYWN0aW9uIDEgaXMgZXhlcmdvbmljIGFuZCBzaG93cyB0aGUgZW5lcmd5IGNoYW5nZXMgaW4gYSBwcm9jZXNzIGxpa2UgcGhvdG9zeW50aGVzaXMu[Qq]

[f]IE5vLiBZb3UmIzgyMTc7cmUgcmlnaHQgYWJvdXQgdGhlIGZpcnN0IHBhcnQsIGJ1dCBub3QgYWJvdXQgdGhlIHNlY29uZC4gVGhlIGdyYXBoIGF0IDEgaXMgZXhlcmdvbmljIGFuZCBjb3VsZCByZXByZXNlbnQgY2VsbHVsYXIgcmVzcGlyYXRpb24sIGJ1dCBub3QgcGhvdG9zeW50aGVzaXMu[Qq]

[c]IHJlYWN0aW9uIDEgaXMgZXhlcmdvbmljLCBhbmQgJiM4MjIwO0MmIzgyMjE7IHJlcHJlc2VudHMgdGhlIGVuZXJneSByZXF1aXJlZCB0byBjb252ZXJ0IHRoZSByZWFjdGFudHMgaW50byB0aGUgcHJvZHVjdHMu[Qq]

[f]IE5vLiBZb3UmIzgyMTc7cmUgcmlnaHQgYWJvdXQgdGhlIGZpcnN0IHBhcnQsIGJ1dCBub3QgYWJvdXQgdGhlIHNlY29uZC4gVGhlIGdyYXBoIGF0IDEgaXMgZXhlcmdvbmljLiBCZWNhdXNlIHRoaXMgaXMgYW4gZXhlcmdvbmljIHJlYWN0aW9uLCBlbmVyZ3kgaXMgcmVsZWFzZWQgd2hlbiB0aGUgcmVhY3RhbnRzIChhdCAmIzgyMjA7QSYjODIyMTspIGFyZSBjb252ZXJ0ZWQgaW50byB0aGUgcHJvZHVjdHMgKGF0ICYjODIyMDtCJiM4MjIxOykuICYjODIyMDtDJiM4MjIxOyByZXByZXNlbnRzIHRoZSBkaWZmZXJlbmNlIGluIHBvdGVudGlhbCBlbmVyZ3kgYmV0d2VlbiB0aGUgcmVhY3RhbnRzIGFuZCB0aGUgcHJvZHVjdHMu[Qq]

[c]IHJlYWN0aW9uIDIgaXMgZW5kZXJnb25pYyBhbmQgY291bGQgc2hvdyB0aGUgZW 5lcmd5IHByb2ZpbGUgb2YgYSBwcm9jZXNzIGxpa2UgcGhvdG9zeW50aGVzaXMu[Qq]

[f]IEZhYnVsb3VzLiBSZWFjdGlvbiAyIGlzIGVuZGVyZ29uaWMgYW5kIGNvdWxkIHJlcHJlc2VudCBhIHByb2Nlc3MgbGlrZSBwaG90b3N5bnRoZXNpcy4gVGhhdCYjODIxNztzIGJlY2F1c2UgcGhvdG9zeW50aGVzaXMgdGFrZXMgbG93LWVuZXJneSByZWFjdGFudHMgKGNhcmJvbiBkaW94aWRlIGFuZCB3YXRlcikgYW5kIGNvbnZlcnRzIHRoZW0gaW50byBoaWdoLWVuZXJneSBwcm9kdWN0cyAobGlrZSBnbHVjb3NlKS4=[Qq]

[c]IHJlYWN0aW9uIDIgaXMgZW5kZXJnb25pYyBhbmQgJiM4MjIwO0QmIzgyMjE7IHNob3dzIHRoZSBlbmVyZ3kgZGlmZmVyZW5jZSBiZXR3ZWVuIHRoZSBwcm9kdWN0cyBhbmQgdGhlIHJlYWN0YW50cy4=[Qq]

[f]IE5vLiBZb3UmIzgyMTc7cmUgcmlnaHQgYWJvdXQgdGhlIGZpcnN0IHBhcnQsIGJ1dCBub3QgYWJvdXQgdGhlIHNlY29uZC4gVGhlIHJlYWN0aW9uIGlzIGVuZGVyZ29uaWMsIGJ1dCAmIzgyMjA7RCYjODIyMTsgcmVwcmVzZW50cyBhY3RpdmF0aW9uIGVuZXJneS4=

Cg==

[Qq]

[q json=”true” multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.4.Cellular_Energy” dataset_id=”Unit 3 Cumulative Multiple Choice Dataset, v2.0|1be0e810c04814″ question_number=”7″] Which of the following must be true of the coupled reactions shown below?

[c]IFJlYWN0aW9ucyAxIGFuZCAzIGFyZSBleGVyZ29uaWM7IH JlYWN0aW9ucyAyIGFuZCA0IGFyZSBlbmRlcmdvbmljLg==[Qq]

[f]IEV4Y2VsbGVudC4gSW4gYm90aCByZWFjdGlvbnMgMSBhbmQgMywgdGhlIHJlYWN0YW50cyAoZ2x1Y29zZSBhbmQgQVRQKSBoYXZlIG1vcmUgZW5lcmd5IHRoYW4gdGhlIHByb2R1Y3RzLiBUaGF0IGluZGljYXRlcyB0aGF0IHRoZXNlIHJlYWN0aW9ucyBoYXZlIHRvIGJlIGV4ZXJnb25pYyAoZW5lcmd5LXJlbGVhc2luZykuIFJlYWN0aW9ucyAyIGFuZCA0IGFyZSB0aGUgb3Bwb3NpdGUsIGluZGljYXRpbmcgdGhhdCB0aGV5IGhhdmUgdG8gYmUgZW5kZXJnb25pYyAocmVxdWlyaW5nIGVuZXJneSk=[Qq]

[c]IFJlYWN0aW9ucyAxIGFuZCAyIGFyZSBleGVyZ29uaWM7IHJlYWN0aW9ucyAzIGFuZCA0IGFyZSBlbmRlcmdvbmlj[Qq]

[f]IE5vLiBJbiBhbiBleGVyZ29uaWMgcmVhY3Rpb24sIHRoZSBlbmVyZ3kgaW4gdGhlIHJlYWN0YW50KHMpIChzdWNoIGFzIGdsdWNvc2UpIHdpbGwgYmUgZ3JlYXRlciB0aGFuIHRoZSBlbmVyZ3kgb2YgdGhlIHByb2R1Y3QocykgKHN1Y2ggYXMgY2FyYm9uIGRpb3hpZGUgYW5kIHdhdGVyKS4gV2hpbGUgcmVhY3Rpb24gMSA=aXM=IGV4ZXJnb25pYywgdGhhdCYjODIxNztzIG5vdCB0cnVlIG9mIHJlYWN0aW9uIDIsIHdoaWNoIGlzIGVuZGVyZ29uaWMgKGVuZXJneS1yZXF1aXJpbmcpLiBVc2UgdGhhdCB0byBnZXQgdGhlIGNvcnJlY3QgYW5zd2VyIHRoZSBuZXh0IHRpbWUgeW91IHNlZSB0aGlzIHF1ZXN0aW9uLg==[Qq]

[c]IFJlYWN0aW9ucyAxIGFuZCAzIGFyZSBlbmRlcmdvbmljOyByZWFjdGlvbnMgMiBhbmQgNCBhcmUgZXhlcmdvbmljLg==[Qq]

[f]IE5vLiBJbiBhbiBleGVyZ29uaWMgcmVhY3Rpb24sIHRoZSBlbmVyZ3kgaW4gdGhlIHJlYWN0YW50KHMpIChzdWNoIGFzIGdsdWNvc2UpIHdpbGwgYmUgZ3JlYXRlciB0aGFuIHRoZSBlbmVyZ3kgb2YgdGhlIHByb2R1Y3QocykgKHN1Y2ggYXMgY2FyYm9uIGRpb3hpZGUgYW5kIHdhdGVyKS4gVGhhdCBtZWFucyB0aGF0IHJlYWN0aW9uIDEgaXMgZXhlcmdvbmljLiBJbiByZWFjdGlvbiAyLCB0aGUgZW5lcmd5IG9mIHRoZSBwcm9kdWN0cyBpcyBsZXNzIHRoYW4gdGhhdCBvZiB0aGUgcmVhY3RhbnRzLiBUaGF0IG1lYW5zIHRoYXQgZW5lcmd5IGlzIHJlcXVpcmVkIGZvciB0aGlzIHJlYWN0aW9uIHRvIHByb2NlZWQsIG1ha2luZyBpdCBlbmRlcmdvbmljLiBVc2UgdGhhdCB0byBnZXQgdGhlIGNvcnJlY3QgYW5zd2VyIHRoZSBuZXh0IHRpbWUgeW91IHNlZSB0aGlzIHF1ZXN0aW9uLg==[Qq]

[c]IFJlYWN0aW9ucyAxIGFuZCAyIGFyZSBlbmRlcmdvbmljOyByZWFjdGlvbnMgMyBhbmQgNCBhcmUgZXhlcmdvbmljLg==[Qq]

[f]IE5vLiBJbiBhbiBleGVyZ29uaWMgcmVhY3Rpb24sIHRoZSBlbmVyZ3kgaW4gdGhlIHJlYWN0YW50KHMpIChzdWNoIGFzIGdsdWNvc2UpIHdpbGwgYmUgZ3JlYXRlciB0aGFuIHRoZSBlbmVyZ3kgb2YgdGhlIHByb2R1Y3QocykgKHN1Y2ggYXMgY2FyYm9uIGRpb3hpZGUgYW5kIHdhdGVyKS4gVGhhdCBtZWFucyB0aGF0IHJlYWN0aW9uIDEgaXMgZXhlcmdvbmljLiBJbiByZWFjdGlvbiAyLCB0aGUgZW5lcmd5IG9mIHRoZSBwcm9kdWN0cyBpcyBsZXNzIHRoYW4gdGhhdCBvZiB0aGUgcmVhY3RhbnRzLiBUaGF0IG1lYW5zIHRoYXQgZW5lcmd5IGlzIHJlcXVpcmVkIGZvciB0aGlzIHJlYWN0aW9uIHRvIHByb2NlZWQsIG1ha2luZyBpdCBlbmRlcmdvbmljLiBVc2UgdGhhdCB0byBnZXQgdGhlIGNvcnJlY3QgYW5zd2VyIHRoZSBuZXh0IHRpbWUgeW91IHNlZSB0aGlzIHF1ZXN0aW9uLg==

Cg==

[Qq]

[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 3 Cumulative Multiple Choice Dataset, v2.0|1be0d0c8496014″ question_number=”8″ unit=”3.Cellular Energetics” topic=”3.5.Photosynthesis”] Inhibitor A affects chloroplast function. Scientists conducted an experiment on the effects of inhibitor A on O2 production and ATP synthesis in illuminated chloroplasts. The results are displayed in the graphs below.

Which of the following conclusions about inhibitor A is most consistent with the results of the experiment?

[c]IEl0IGluaGliaXRzIHRoZS Bwcm90b24gZ3JhZGllbnQu[Qq]

[f]IFllcy4gSWYgaW5oaWJpdG9yIEEmIzgyMTc7cyBlZmZlY3Qgd2FzIHRvIGFsbG93IHRoZSBsaWdodCByZWFjdGlvbnMgdG8gcG93ZXIgZWxlY3Ryb24gZmxvdyAoc2hvd24gYmVsb3cgYXQgbCwgYiwgZSwgYW5kIGYpLCBidXQgaW5oaWJpdCB0aGUgY3JlYXRpb24gb2YgYSBwcm90b24gZ3JhZGllbnQgKEopLCB0aGVuIHdlIHdvdWxkIG9ic2VydmUgdGhlIGNvbnRpbnVlZCByZWxlYXNlIG9mIG94eWdlbiBidXQgdGhlIGNlc3NhdGlvbiBvZiBBVFAgc3ludGhlc2lzIChhbmQgdGhhdCYjODIxNztzIGV4YWN0bHkgd2hhdCB3ZSBzZWUpLg==

Cg==

[Qq]

[c]IEl0IGluaGliaXRzIHRoZSByZWR1Y3Rpb24gb2YgTkFEUA==Kw==Lg==[Qq]

[f]IE5vLiBUaGUgYWRkaXRpb24gb2YgQSBhbGxvd3MgTw==Mg==IHRvIGJlIHByb2R1Y2VkLCBidXQgbm90IEFUUC4gSWYgTw==Mg==IGlzIGJlaW5nIHByb2R1Y2VkIChhdCBLLCBiZWxvdyksIHRoZW4gd2UgY2FuIGhhdmUgZWxlY3Ryb24gZmxvdyAoc2hvd24gYmVsb3cgYXQgbCwgYiwgZSwgYW5kIGYpLCBhbmQgaWYgd2UgaGF2ZSBlbGVjdHJvbiBmbG93LCB0aGVuIE5BRFA=[Qq]+ will be reduced to NADPH. If ATP synthesis is going to be inhibited, what needs to be prevented?

[c]IEl0IGluaGliaXRzIHRoZSBwcm90b24gZ3JhZGllbnQgYW5kIHRoZSByZWR1Y3Rpb24gb2YgTkFEUA==Kw==Lg==[Qq]

[f]IE5vLiBZb3UgY2FuIHNlZSBmcm9tIHRoZSBncmFwaCBhYm92ZSB0aGF0IG94eWdlbiBwcm9kdWN0aW9uIGlzIG5vdCBhZmZlY3RlZCBieSBzdWJzdGFuY2UgQSwgYnV0IEFUUCBzeW50aGVzaXMgaXMuIENvbnNlcXVlbnRseSwgdGhlIGZpcnN0IHBhcnQgb2Ygd2hhdCB5b3UmIzgyMTc7dmUgY2hvc2VuIG1ha2VzIHNlbnNlLCBiZWNhdXNlIEFUUCBzeW50aGVzaXMgd2lsbCBiZSBpbmhpYml0ZWQgaWYgdGhlIHByb3RlaW4gZ3JhZGllbnQgaXMgaW5oaWJpdGVkIChsb29rIGF0IEMsIEosIEksIGFuZCBIIGluIHRoZSBkaWFncmFtIGJlbG93KS4gQnV0IGlmIG94eWdlbiBpcyBzdGlsbCBiZWluZyBwcm9kdWNlZCBpbiB0aGUgcHJlc2VuY2Ugb2YgQSwgdGhlbiB5b3UgY2FuIGNvbmNsdWRlIHRoYXQgd2F0ZXIgaXMgYmVpbmcgc3BsaXQgYW5kIGVsZWN0cm9ucyBhcmUgZmxvd2luZyAobCwgYiwgZSwgYW5kIGYpIGJlbG93LCBsZWFkaW5nIHRvIHRoZSByZWR1Y3Rpb24gb2YgTkFEUA==Kw==Lg==

Cg==

[Qq]

[c]IEl0IGRvZXMgbm90IGluaGliaXQgdGhlIHByb3RvbiBncmFkaWVudCBvciB0aGUgcmVkdWN0aW9uIG9mIE5BRFA=Kw==Lg==[Qq]

[f]IE5vLiBZb3UgY2FuIHNlZSBmcm9tIHRoZSBncmFwaCBhYm92ZSB0aGF0IG94eWdlbiBwcm9kdWN0aW9uIGlzIG5vdCBhZmZlY3RlZCBieSBzdWJzdGFuY2UgQSwgYnV0IEFUUCBzeW50aGVzaXMgaXMuIENvbnNlcXVlbnRseSwgdGhlIHNlY29uZCBwYXJ0IG9mIHRoaXMgY2hvaWNlIG1ha2VzIHNlbnNlLCBidXQgbm90IHRoZSBmaXJzdC4gSW4gb3RoZXIgd29yZHMsIHdhdGVyIGlzIHN0aWxsIGJlaW5nIG94aWRpemVkIChLKSwgcHJvdmlkaW5nIGZvciBlbGVjdHJvbiBmbG93IChsLCBiLCBlLCBhbmQgZikgZm9yIHJlZHVjdGlvbiBvZiBOQURQKw==LiBCdXQgaWYgQVRQIGlzIG5vdCBiZWluZyBwcm9kdWNlZCAoaCksIHRoZW4gc29tZXRoaW5nIGhhcyB0byBiZSBpbnRlcmZlcmluZyB3aXRoIHByb3RvbiBhY2N1bXVsYXRpb24gKGogYW5kIEspIGluIHRoZSB0aHlsYWtvaWQgc3BhY2UgKDIpLg==
Cg==

[Qq]

[q json=”true” xyz=”2″ multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.5.Photosynthesis” dataset_id=”Unit 3 Cumulative Multiple Choice Dataset, v2.0|1be0bbd3de5c14″ question_number=”9″] The diagram below shows the photosynthetic electron transport system found in the thylakoid membrane.  Imagine that all of the proteins on the thylakoid membrane were oriented in the opposite direction so that portions facing the thylakoid space were facing the stroma instead and vice versa.  Which of the following would be the effect on carbon fixation?

[c]IExlc3MgY2FyYm9uIGRpb3hpZGUgd291bGQgYmUgZml4ZWQgYmVjYXVzZSBOQURQSCBhbmQgQVRQIH dvdWxkIG5vdCBiZSByZWFkaWx5IGF2YWlsYWJsZSB0byBwb3dlciB0aGUgQ2FsdmluIGN5Y2xlLg==[Qq]

[f]IEV4Y2VsbGVudC4gVGhlIENhbHZpbiBDeWNsZSBvY2N1cnMgaW4gdGhlIHN0cm9tYSwgYW5kIGl0IHJlbGllcyBvbiB0aGUgbGlnaHQgcmVhY3Rpb25zIGZvciBOQURQSCBhbmQgQVRQLiBJZiBBVFAgYW5kIE5BRFBIIHdlcmUgY3JlYXRlZCBpbnNpZGUgdGhlIHRoeWxha29pZCBzcGFjZSwgdGhlbiB0aGVzZSBtb2xlY3VsZXMgd291bGQgbm90IGJlIGF2YWlsYWJsZSB0byBkcml2ZSB0aGUgQ2FsdmluIGN5Y2xlLg==[Qq]

[c]IE1vcmUgY2FyYm9uIGRpb3hpZGUgd291bGQgYmUgZml4ZWQgYmVjYXVzZSBtb3JlIE5BRFBIIGFuZCBBVFAgd291bGQgYmUgYXZhaWxhYmxlIHRvIHBvd2VyIHRoZSBDYWx2aW4gY3ljbGUu[Qq]

[f]IE5vLiBJZiB0aGUgZGlyZWN0aW9uIG9mIHRoZSBwcm90ZWlucyBpbiB0aGUgdGh5bGFrb2lkIG1lbWJyYW5lIHdhcyByZXZlcnNlZCwgdGhlbiBOQURQSCBhbmQgQVRQIHdvdWxkIGJlIGNyZWF0ZWQgaW4gdGhlIHRoeWxha29pZCBzcGFjZSwgYW5kIG5vdCB0aGUgc3Ryb21hLCB3aGVyZSB0aGUgQ2FsdmluIGN5Y2xlIGhhcHBlbnMuIElmIE5BRFBIIGFuZCBBVFAgd2VyZSBub3QgYXZhaWxhYmxlIGluIHRoZSBzdHJvbWEsIHdoYXQgd291bGQgaGFwcGVuIHRvIHRoZSBhbW91bnQgb2YgY2FyYm9uIGRpb3hpZGUgZml4YXRpb24gdGhhdCBvY2N1cnMgZHVyaW5nIHRoZSBDYWx2aW4gY3ljbGU/[Qq]

[c]IFRoZXJlIHdvdWxkIGJlIG5vIGVmZmVjdCBvbiB0aGUgYW1vdW50IG9mIGNhcmJvbiBkaW94aWRlIGZpeGVkIGJlY2F1c2UgdGhlwqAgQ2FsdmluIGN5Y2xlIGFsc28gb2NjdXJzIGluIHRoZSB0aHlsYWtvaWQgc3BhY2Uu[Qq]

[f]IE5vLiBUaGUgQ2FsdmluIGN5Y2xlIG9ubHkgb2NjdXJzIGluIHRoZSBzdHJvbWEu[Qq]

[c]IExlc3MgY2FyYm9uIGRpb3hpZGUgd291bGQgYmUgZml4ZWQgYmVjYXVzZSB0aGUgbGlnaHQgd291bGQgZXhjaXRlIGZld2VyIGVsZWN0cm9ucy4=[Qq]

[f]IE5vLiBXaGlsZSB0aGUgbG9jYXRpb24gb2YgQVRQIGFuZCBOQURQSCBwcm9kdWN0aW9uIHdvdWxkIGJlIGNoYW5nZWQsIHRoZXJlJiM4MjE3O3Mgbm8gaW5kaWNhdGlvbiB0aGF0IHRoZSBhbW91bnQgb2YgbGlnaHQgYWJzb3JwdGlvbiBhbmQgZWxlY3Ryb24gZXhjaXRhdGlvbiB3b3VsZCBjaGFuZ2UuIE5leHQgdGltZSB5b3Ugc2VlIHRoaXMgcXVlc3Rpb24sIHRoaW5rIGFib3V0IHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiB0aGUgbGlnaHQgcmVhY3Rpb25zIGFuZCB0aGUgQ2FsdmluIGN5Y2xlLg==

Cg==

[Qq]

[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 3 Cumulative Multiple Choice Dataset, v2.0|1be0a48b677414″ question_number=”10″ unit=”3.Cellular Energetics” topic=”3.5.Photosynthesis”] H2O18 is water with a radioactive isotope of oxygen. In a demonstration of plant metabolism, plants are watered with H2O18 and then placed in the light for four hours. Afterward, the chemicals in and around the plants are analyzed for traces of radioactivity.

Which of the following would contain the radioactive oxygen atoms after four hours?

[c]IHByb3RlaW4=[Qq]

[f]IE5vLiBUaGlzIHF1ZXN0aW9uIGlzIGFib3V0IHlvdXIgdW5kZXJzdGFuZGluZyBvZiB0aGUgbGlnaHQgcmVhY3Rpb25zIG9mIHBob3Rvc3ludGhlc2lzLiBGaW5kIHRoZSB3YXRlciBtb2xlY3VsZSBpbiB0aGUgZGlhZ3JhbSBiZWxvdyAoaXQmIzgyMTc7cyBvbiB0aGUgYm90dG9tIGxlZnQpLiBGb2xsb3cgdGhlIGFycm93IHRvIHNlZSB3aGF0IGhhcHBlbnMgdG8gdGhlIHdhdGVyLiBJZiB0aGUgb3h5Z2VuIGluIHRoZSB3YXRlciBoYWQgYmVlbiByYWRpb2FjdGl2ZWx5IGxhYmVsZWQsIHdoZXJlIHdvdWxkIHlvdSBzZWUgcmFkaW9hY3Rpdml0eT8=

Cg==

[Qq]

[c]IGdsdWNvc2U=[Qq]

[f]IE5vLiBUaGlzIHF1ZXN0aW9uIGlzIGFib3V0IHlvdXIgdW5kZXJzdGFuZGluZyBvZiB0aGUgbGlnaHQgcmVhY3Rpb25zIG9mIHBob3Rvc3ludGhlc2lzLiBGaW5kIHRoZSB3YXRlciBtb2xlY3VsZSBpbiB0aGUgZGlhZ3JhbSBiZWxvdyAoaXQmIzgyMTc7cyBvbiB0aGUgYm90dG9tIGxlZnQpLiBGb2xsb3cgdGhlIGFycm93IHRvIHNlZSB3aGF0IGhhcHBlbnMgdG8gdGhlIHdhdGVyLiBJZiB0aGUgb3h5Z2VuIGluIHRoZSB3YXRlciBoYWQgYmVlbiByYWRpb2FjdGl2ZWx5IGxhYmVsZWQsIHdoZXJlIHdvdWxkIHlvdSBzZWUgcmFkaW9hY3Rpdml0eT8=

Cg==

[Qq]

[c]IG94eWdl biBnYXM=[Qq]

[f]IEdyZWF0IGpvYiEgSW4gdGhlIGxpZ2h0IHJlYWN0aW9ucyBvZiBwaG90b3N5bnRoZXNpcywgd2F0ZXIgbW9sZWN1bGVzIGFyZSBzcGxpdCBhcGFydCwgVGhlIHJlc3VsdGluZyBwcm90b25zIHBvd2VyIEFUUCBwcm9kdWN0aW9uLCBhbmQgdGhlIG94eWdlbiBiZWNvbWVzIE8=Mg==IChtb2xlY3VsYXIgb3h5Z2VuKSwgdGhlIHNvdXJjZSBvZiB0aGUgb3h5Z2VuIGluIG91ciBhdG1vc3BoZXJlLiBJZiB3YXRlciYjODIxNztzIG94eWdlbiBhdG9tcyB3ZXJlIHJhZGlvYWN0aXZlbHkgbGFiZWxlZCwgdGhlc2Ugc2FtZSByYWRpb2FjdGl2ZSBhdG9tcyB3b3VsZCBlbWVyZ2UgbGF0ZXIgYXMgcmFkaW9hY3RpdmUgb3h5Z2VuIGdhcyA=KA==MTg=[Qq]O2).

[c]IGNhcmJvbiBkaW94aWRlIGdhcw==[Qq]

[f]IE5vLiBUaGlzIHF1ZXN0aW9uIGlzIGFib3V0IHlvdXIgdW5kZXJzdGFuZGluZyBvZiB0aGUgbGlnaHQgcmVhY3Rpb25zIG9mIHBob3Rvc3ludGhlc2lzLiBGaW5kIHRoZSB3YXRlciBtb2xlY3VsZSBpbiB0aGUgZGlhZ3JhbSBiZWxvdyAoaXQmIzgyMTc7cyBvbiB0aGUgYm90dG9tIGxlZnQpLiBGb2xsb3cgdGhlIGFycm93IHRvIHNlZSB3aGF0IGhhcHBlbnMgdG8gdGhlIHdhdGVyLiBJZiB0aGUgb3h5Z2VuIGluIHRoZSB3YXRlciBoYWQgYmVlbiByYWRpb2FjdGl2ZWx5IGxhYmVsZWQsIHdoZXJlIHdvdWxkIHlvdSBzZWUgcmFkaW9hY3Rpdml0eT8=

Cg==

Cg==

[Qq]

[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 3 Cumulative Multiple Choice Dataset, v2.0|1be08d42f08c14″ question_number=”11″ unit=”3.Cellular Energetics” topic=”3.5.Photosynthesis”] In an experiment on the rate of photosynthesis in a plant, scientists measured a leaf’s net uptake of carbon dioxide from the external environment over a range of absorbed light intensities. The results are shown in the graph below.


If all the other variables were kept constant during the experiment, which of the following statements best explains why at higher levels of absorbed light, the net CO2 uptake curve flattens out?

[c]IEFic29yYmVkIGxpZ2h0IGlzIGxpbWl0ZWQu[Qq]

[f]IE5vLiBMb29rIGF0IHRoZSBncmFwaCBhZ2FpbiwgZm9jdXNpbmcgb24gdGhlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHRoZSBYIGFuZCBZLWF4aXMgdmFsdWVzLiBBZnRlciBhIGNlcnRhaW4gcG9pbnQsIGFic29yYmVkIGxpZ2h0IGlzIGluY3JlYXNpbmcsIGJ1dCB0aGUgbmV0IHJhdGUgb2YgY2FyYm9uIGRpb3hpZGUgaXMgc3RheWluZyB0aGUgc2FtZS4=[Qq]

[c]IFRoZSBwaG90b3N5bnRoZXNpcyByYX RlIHJlYWNoZXMgaXRzIG1heGltdW0u[Qq]

[f]IFllcy4gQmFzZWQgb24gdGhlIGdyYXBoLCBpdCBsb29rcyBsaWtlIGJleW9uZCBhIGNlcnRhaW4gbGV2ZWwgb2YgYWJzb3JiZWQgbGlnaHQgaW50ZW5zaXR5IChhYm91dCAzMDAgdW5pdHMpIHRoZSByYXRlIG9mIHBob3Rvc3ludGhlc2lzIHJlYWNoZXMgaXRzIG1heGltdW0u[Qq]

[c]IENhcmJvbiBkaW94aWRlIGNvbmNlbnRyYXRpb24gZnJvbSB0aGUgZXh0ZXJuYWwgZW52aXJvbm1lbnQgaW5jcmVhc2VzLg==[Qq]

[f]IE5vLiBUaGUgcXVlc3Rpb24gc3RhdGVzIHRoYXQgb3RoZXIgdmFyaWFibGVzIChiZXNpZGVzIGFic29yYmVkIGxpZ2h0KSB3aWxsIGJlIGtlcHQgY29uc3RhbnQsIGFuZCB5b3UgY2FuIGFzc3VtZSB0aGF0IGluY2x1ZGVzIHRoZSBjYXJib24gZGlveGlkZSBjb25jZW50cmF0aW9uLg==[Qq]

[c]IFRoZSBwaG90b3N5bnRoZXNpcyByYXRlIGlzIGluaGliaXRlZCBieSB0aGUgb3h5Z2VuIGNvbmNlbnRyYXRpb24u[Qq]

[f]IE5vLiBUaGUgcXVlc3Rpb24gc3RhdGVzIHRoYXQgb3RoZXIgdmFyaWFibGVzIChiZXNpZGVzIGFic29yYmVkIGxpZ2h0KSB3aWxsIGJlIGtlcHQgY29uc3RhbnQsIGFuZCB5b3UgY2FuIGFzc3VtZSB0aGF0IGluY2x1ZGVzIHRoZSBveHlnZW4gY29uY2VudHJhdGlvbi4=

Cg==

[Qq]

[q json=”true” xyz=”2″ multiple_choice=”true” unit=”3.Cellular Energetics” dataset_id=”Unit 3 Cumulative Multiple Choice Dataset, v2.0|1be075fa79a414″ question_number=”12″ topic=”3.5.Photosynthesis”] Four different biological molecules are represented in the diagram below. Molecule A is glucose. Molecules B, C and D are composed of glucose subunits that are covalently linked together.


The process most directly responsible for creating molecule A (glucose) is

[c]IGdseWNvbHlzaXM=[Qq]

[f]IE5vLiBHbHljb2x5c2lzIGlzIHRoZSBmaXJzdCBzdGVwIGluIGNlbGx1bGFyIHJlc3BpcmF0aW9uIGFuZCBpcyB0aGVyZWZvcmUgaW52b2x2ZWQgaW4gYnJlYWtpbmcgZ2x1Y29zZSBhcGFydCAoYXMgb3Bwb3NlZCB0byBjcmVhdGluZyBpdCkuIEhlcmUmIzgyMTc7cyBhIGhpbnQ6IHRoZSBwcm9jZXNzIGhhcHBlbnMgaW4gcGxhbnRzLCBidXQgbm90IGluIGFuaW1hbHMu[Qq]

[c]IHRoZSBLcmVicyBjeWNsZQ==[Qq]

[f]IE5vLiBUaGUgS3JlYnMgY3ljbGUgaXMgb25lIG9mIHRoZSBtYWpvciByZWFjdGlvbnMgaW52b2x2ZWQgaW4gY2VsbHVsYXIgcmVzcGlyYXRpb24uIFRoYXQgbWFrZXMgaXQgbW9yZSBpbnZvbHZlZCBpbiBicmVha2luZyBnbHVjb3NlIGFwYXJ0IHRoYW4gYnVpbGRpbmcgaXQuIEhlcmUmIzgyMTc7cyBhIGhpbnQ6IHRoZSBwcm9jZXNzIGhhcHBlbnMgaW4gcGxhbnRzLCBidXQgbm90IGluIGFuaW1hbHMu[Qq]

[c]IHRoZSBsaWdodCByZWFjdGlvbnMgb2YgcGhvdG9zeW50aGVzaXM=[Qq]

[f]IE5vLCBidXQgeW91JiM4MjE3O3JlIHZlcnkgY2xvc2UuIFRoZSBsaWdodCByZWFjdGlvbnMgY3JlYXRlIHRoZSBOQURQSCBhbmQgQVRQIHRoYXQmIzgyMTc7cyByZXF1aXJlZCBmb3IgdGhlIG5leHQgcGhhc2Ugb2YgcGhvdG9zeW50aGVzaXMgdG8gdGFrZSBpbiBjYXJib24gZGlveGlkZSBhbmQgcmVkdWNlIGl0IHRvIGNhcmJvaHlkcmF0ZXMgc3VjaCBhcyBnbHVjb3NlLiBXaGF0IGlzIHRoYXQgbmV4dCBwaGFzZSBjYWxsZWQ/[Qq]

[c]IHRoZSBDYWx2 aW4gQ3ljbGU=[Qq]

[f]IE5pY2Ugam9iLiBUaGUgQ2FsdmluIGN5Y2xlLCBhbHNvIGNhbGxlZCB0aGUgbGlnaHQtaW5kZXBlbmRlbnQgcGhhc2Ugb2YgcGhvdG9zeW50aGVzaXMsIGlzIHRoZSBwcm9jZXNzIGRpcmVjdGx5IHJlc3BvbnNpYmxlIGZvciBjcmVhdGluZyBjYXJib2h5ZHJhdGVzIHN1Y2ggYXMgZ2x1Y29zZS4=

Cg==

[Qq]

[q json=”true” xyz=”2″ multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.5.Photosynthesis” dataset_id=”Unit 3 Cumulative Multiple Choice Dataset, v2.0|1be049bd97b814″ question_number=”13″] Rubisco is the key enzyme involved in carbon fixation during the Calvin cycle. Depending on the temperature and the availability of carbon dioxide, Rubisco can function as a carboxylase or as an oxidase.  As a carboxylase, it combines carbon dioxide with a 5-carbon molecule called RuBP.  This produces two molecules of PGA as shown below.  As an oxygenase, Rubisco uses oxygen instead of carbon dioxide.

These functions are summarized in the table below.

Which of the following would be a possible result of rubisco acting as an oxygenase?

[c]IFRoZSByZWFjdGlvbiBjb3VsZCBzdGlsbCBwcm9kdWNlIHR3byB0aHJlZS1jYXJib24gbW9sZWN1bGVzLg==[Qq]

[f]IE5vLiBSVUJQIChmKSBiZWxvdyBpcyBhIDUtY2FyYm9uIG1vbGVjdWxlLiBJZiBSdWJpc2NvIGluY29ycG9yYXRlZCBveHlnZW4gaW5zdGVhZCBvZiBjYXJib24gZGlveGlkZSwgdGhlcmUgd291bGQgb25seSBiZSA1IGNhcmJvbiBhdG9tcyBhdmFpbGFibGUsIHNvIGJ1aWxkaW5nIHR3byB0aHJlZS1jYXJib24gbW9sZWN1bGVzICh3aXRoIGEgdG90YWwgb2YgNiBjYXJib24gYXRvbXMpIHdvdWxkIGJlIGltcG9zc2libGUu

Cg==

[Qq]

[c]IFRoZSByZWFjdGlvbiBjb3VsZCByZXN1bHQgaW4gb25lIFBH QSBhbmQgb25lIG1vbGVjdWxlIHdpdGggdHdvIGNhcmJvbnMu[Qq]

[f]IFllcy4gSWYgUnViaXNjbyBhZGRlZCBhbiBveHlnZW4gbW9sZWN1bGUgdG8gUlVCUCAoYSA1LWNhcmJvbiBtb2xlY3VsZSkgdGhlIHJlc3VsdCB3b3VsZCBiZSBhIHRvdGFsIG9mIDUgY2FyYm9uIGF0b21zLiBUaGVzZSA1IGNhcmJvbnMgYXJlLCBpbiBmYWN0LCB1c2VkIHRvIGNyZWF0ZSBvbmUgMy1jYXJib24gUEdBLCBhbmQgb25lIDItY2FyYm9uIG1vbGVjdWxlIGNhbGxlZCBwaG9zcGhvZ2x5Y29sYXRlLg==

Cg==

[Qq]

[c]IFRoZSByZWFjdGlvbiB3b3VsZCBpbmNyZWFzZSB0aGUgcmF0ZSBvZiBjYXJib24gZGlveGlkZSBmaXhhdGlvbg==LiA=[Qq]

[f]IE5vLiBXaGVuIHJ1YmlzY28gYWN0cyBhcyBhbiBveHlnZW5hc2UsIGl0IGRvZXNuJiM4MjE3O3QgYnJpbmcgYW55IGNhcmJvbiBhdCBhbGwgaW50byB0aGUgcGxhbnQsIHNvIG5vIGNhcmJvbiBmaXhhdGlvbiBpcyBvY2N1cnJpbmcu

Cg==

[Qq]

[q json=”true” multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.6.Respiration” dataset_id=”Unit 3 Cumulative Multiple Choice Dataset, v2.0|1be0327520d014″ question_number=”14″] If cultured muscle tissue is kept under aerobic conditions and provided with 10 moles of glucose, what’s the maximum number of moles of ATP that this tissue will be able to produce?

[c]IDEyIA==[Qq][c]IDE2IA==[Qq][c]IDIwIA==[Qq][c]IDEwMCA=[Qq][c]IDM2 MA==

Cg==[Qq]

[f]IE5vLiBVbmRlciBhZXJvYmljIGNvbmRpdGlvbnMsIG9uZSBtb2xlIG9mIGdsdWNvc2UgY2FuIHBvd2VyIHRoZSBwcm9kdWN0aW9uIG9mIHVwIHRvIDM2IG1vbGVzIG9mIEFUUC4=[Qq]

[f]IE5vLiBVbmRlciBhZXJvYmljIGNvbmRpdGlvbnMsIG9uZSBtb2xlIG9mIGdsdWNvc2UgY2FuIHBvd2VyIHRoZSBwcm9kdWN0aW9uIG9mIHVwIHRvIDM2IG1vbGVzIG9mIEFUUC4=[Qq]

[f]IE5vLiBVbmRlciBhZXJvYmljIGNvbmRpdGlvbnMsIG9uZSBtb2xlIG9mIGdsdWNvc2UgY2FuIHBvd2VyIHRoZSBwcm9kdWN0aW9uIG9mIHVwIHRvIDM2IG1vbGVzIG9mIEFUUC4=[Qq]

[f]IE5vLiBVbmRlciBhZXJvYmljIGNvbmRpdGlvbnMsIG9uZSBtb2xlIG9mIGdsdWNvc2UgY2FuIHBvd2VyIHRoZSBwcm9kdWN0aW9uIG9mIHVwIHRvIDM2IG1vbGVzIG9mIEFUUC4=[Qq]

[f]IE5pY2UuIFVuZGVyIGFlcm9iaWMgY29uZGl0aW9ucywgb25lIG1vbGUgb2YgZ2x1Y29zZSBjYW4gcG93ZXIgdGhlIHByb2R1Y3Rpb24gb2YgdXAgdG8gMzYgbW9sZXMgb2YgQVRQLg==

Cg==

[Qq]

[q json=”true” multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.6.Respiration” dataset_id=”Unit 3 Cumulative Multiple Choice Dataset, v2.0|1be01b2ca9e814″ question_number=”15″] In the series of reactions below, which letter represents an oxidation-reduction reaction?

[c]IEEg[Qq][c]IEIg[Qq][c]IE Mg[Qq][c]IEQ=

Cg==[Qq]

[f]IE5vLiAmIzgyMjA7QSYjODIyMTsgaW52b2x2ZXMgdGhlIHBob3NwaG9yeWxhdGlvbiBvZiBnbHVjb3NlIG9yIGl0cyBieXByb2R1Y3RzIHRvIGNyZWF0ZSBmcnVjdG9zZS0xLTYgYmlzcGhvc3BoYXRlLg==[Qq]

[f]IE5vLiAmIzgyMjA7QiYjODIyMTsgaXMgdGhlIGNsZWF2YWdlIHN0YWdlIG9mIGdseWNvbHlzaXMu[Qq]

[f]IEdyZWF0IGpvYi4gSW4gc3RhZ2UgJiM4MjIwO0MsJiM4MjIxOyBHM1AgKG9yIG9uZSBvZiBpdHMgYnlwcm9kdWN0cykgaXMgb3hpZGl6ZWQgc28gdGhhdCBOQUQ=Kw==IGNhbiBiZSByZWR1Y2VkIHRvIE5BREgu[Qq]

[f]IE5vLiAmIzgyMjA7RCYjODIyMTsgaXMgYSBzdWJzdHJhdGUtbGV2ZWwgcGhvc3Bob3J5bGF0aW9uIHRoYXQgY29udmVydHMgQURQIGFuZCBQaQ==IHRvIEFUUC4=

Cg==

[Qq]

[q json=”true” multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.6.Respiration” dataset_id=”Unit 3 Cumulative Multiple Choice Dataset, v2.0|1be003e4330014″ question_number=”16″] The diagram below compares energy metabolism in normal cells to cancer cells. LDHA stands for Lactose dehydrogenase A, an enzyme that converts pyruvate to lactate (lactic acid). MCT is a channel that allows lactic acid to diffuse across the cell membrane.

Based on the diagram, which of the following statements is most likely correct?

[c]IENhbmNlciBjZWxscyBwZXJmb3JtIG1vcmUgZ2x5Y29seXNpcyB0aGFuIG5vcm1hbC BjZWxscyBhbmQgYXJlIGxlc3MgZWZmaWNpZW50IGF0IGdlbmVyYXRpbmcgQVRQLg==[Qq]

[f]IFllcy4gSWYgeW91IGNvbXBhcmUgdGhlIGNhbmNlciBjZWxsIHRvIHRoZSBub3JtYWwgY2VsbCwgeW91IGNhbiBzZWUgdGhhdCBpbiB0aGUgY2FuY2VyIGNlbGwsIHRoZSBhcnJvdyBiZXR3ZWVuIHB5cnV2YXRlIGFuZCBsYWN0YXRlIGlzIHRoaWNrZXIsIGluZGljYXRpbmcgdGhhdCBtb3JlIGZlcm1lbnRhdGlvbiBpcyBvY2N1cnJpbmcuIEluIGFkZGl0aW9uLCBpbiB0aGUgY2FuY2VyIGNlbGwsIHRoZSBhcnJvdyBiZXR3ZWVuIHB5cnV2YXRlIGFuZCB0aGUgbWl0b2Nob25kcmlvbiBpcyB0aGlubmVyLCBtZWFuaW5nIHRoYXQgbGVzcyBweXJ1dmF0ZSBpcyBnb2luZyBpbnRvIHRoZSBtaXRvY2hvbmRyaW9uIHRvIHBvd2VyIG94aWRhdGl2ZSBwaG9zcGhvcnlsYXRpb24uIFRvZ2V0aGVyLCB0aGF0IGluZGljYXRlcyB0aGF0IG1vcmUgZ2x5Y29seXNpcyBpcyBvY2N1cnJpbmcsIGFuZCBnbHljb2x5c2lzIGlzIGxlc3MgZWZmaWNpZW50IGF0IGdlbmVyYXRpbmcgQVRQIHRoYW4gaXMgb3hpZGF0aXZlIHBob3NwaG9yeWxhdGlvbi4=[Qq]

[c]IENhbmNlciBjZWxscyBwZXJmb3JtIGxlc3MgZ2x5Y29seXNpcyB0aGFuIG5vcm1hbCBjZWxscyBhbmQgYXJlIG1vcmUgZWZmaWNpZW50IGF0IGdlbmVyYXRpbmcgQVRQLg==[Qq]

[f]IE5vLiBIZXJlJiM4MjE3O3MgYSBoaW50LiBJZiB5b3UgY29tcGFyZSB0aGUgY2FuY2VyIGNlbGwgdG8gdGhlIG5vcm1hbCBjZWxsLCB5b3UgY2FuIHNlZSB0aGF0IGluIHRoZSBjYW5jZXIgY2VsbCwgdGhlIGFycm93IGJldHdlZW4gcHlydXZhdGUgYW5kIGxhY3RhdGUgaXMgdGhpY2tlciwgaW5kaWNhdGluZyB0aGF0IG1vcmUgZmVybWVudGF0aW9uIGFuZCBnbHljb2x5c2lzIGFyZSBvY2N1cnJpbmcuIEluIGFkZGl0aW9uLCBpbiB0aGUgY2FuY2VyIGNlbGwsIHRoZSBhcnJvdyBiZXR3ZWVuIHB5cnV2YXRlIGFuZCB0aGUgbWl0b2Nob25kcmlvbiBpcyB0aGlubmVyLCBtZWFuaW5nIHRoYXQgbGVzcyBweXJ1dmF0ZSBpcyBnb2luZyBpbnRvIHRoZSBtaXRvY2hvbmRyaW9uIHRvIHBvd2VyIG94aWRhdGl2ZSBwaG9zcGhvcnlsYXRpb24uIEhvdyBkb2VzIHRoZSBlZmZpY2llbmN5IG9mIGdseWNvbHlzaXMgY29tcGFyZSB0byB0aGF0IG9mIG94aWRhdGl2ZSBwaG9zcGhvcnlsYXRpb24/[Qq]

[c]IENhbmNlciBjZWxscyBwZXJmb3JtIG1vcmUgZ2x5Y29seXNpcyB0aGFuIG5vcm1hbCBjZWxscyBhbmQgYXJlIG1vcmUgZWZmaWNpZW50IGF0IGdlbmVyYXRpbmcgQVRQLg==[Qq]

[f]IE5vLiBZb3UmIzgyMTc7cmUgcmlnaHQgYWJvdXQgdGhlIGZpcnN0IHBhcnQsIGJ1dCBub3QgdGhlIHNlY29uZC4gSGVyZSYjODIxNztzIGEgaGludC4gSWYgeW91IGNvbXBhcmUgdGhlIGNhbmNlciBjZWxsIHRvIHRoZSBub3JtYWwgY2VsbCwgeW91IGNhbiBzZWUgdGhhdCBpbiB0aGUgY2FuY2VyIGNlbGwsIHRoZSBhcnJvdyBiZXR3ZWVuIHB5cnV2YXRlIGFuZCBsYWN0YXRlIGlzIHRoaWNrZXIsIGluZGljYXRpbmcgdGhhdCBtb3JlIGZlcm1lbnRhdGlvbiBhbmQgZ2x5Y29seXNpcyBhcmUgb2NjdXJyaW5nLiBJbiBhZGRpdGlvbiwgaW4gdGhlIGNhbmNlciBjZWxsLCB0aGUgYXJyb3cgYmV0d2VlbiBweXJ1dmF0ZSBhbmQgdGhlIG1pdG9jaG9uZHJpb24gaXMgdGhpbm5lciwgbWVhbmluZyB0aGF0IGxlc3MgcHlydXZhdGUgaXMgZ29pbmcgaW50byB0aGUgbWl0b2Nob25kcmlvbiB0byBwb3dlciBveGlkYXRpdmUgcGhvc3Bob3J5bGF0aW9uLiBIb3cgZG9lcyB0aGUgZWZmaWNpZW5jeSBvZiBnbHljb2x5c2lzIGNvbXBhcmUgdG8gdGhhdCBvZiBveGlkYXRpdmUgcGhvc3Bob3J5bGF0aW9uPw==[Qq]

[c]IENhbmNlciBjZWxscyBjb25zdW1lIGxlc3MgZ2x1Y29zZSB0aGFuIG5vcm1hbCBjZWxscyBhbmQgYXJlIGxlc3MgZWZmaWNpZW50IGF0IGdlbmVyYXRpbmcgQVRQLg==[Qq]

[f]IE5vLiBZb3UmIzgyMTc7cmUgcmlnaHQgYWJvdXQgdGhlIHNlY29uZCBwYXJ0LCBidXQgbm90IHRoZSBmaXJzdC4gQ2FuY2VyIGNlbGxzIGFyZSBsZXNzIGVmZmljaWVudCBhdCBnZW5lcmF0aW5nIEFUUC4gVGhhdCYjODIxNztzIGJlY2F1c2UgdGhleSBwZXJmb3JtIG1vcmUgZ2x5Y29seXNpcyB0aGFuIG5vcm1hbCBjZWxscyBkby4gV2hhdCBtb2xlY3VsZSBmdWVscyBnbHljb2x5c2lzPyBIb3cgd2lsbCBwZXJmb3JtaW5nIG9ubHkgZ2x5Y29seXNpcyAoYSBsZXNzIGVmZmljaWVudCB3YXkgdG8gbWFrZSBBVFApIGFmZmVjdCBjYW5jZXIgY2VsbHMmIzgyMTc7IG5lZWQgZm9yIHRoaXMgbW9sZWN1bGU/

Cg==

[Qq]

[q json=”true” xyz=”2″ multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.6.Respiration” dataset_id=”Unit 3 Cumulative Multiple Choice Dataset, v2.0|1bdfec9bbc1814″ question_number=”17″] Uncoupling protein (UCP) is a proton channel protein that can be found in the inner mitochondrial membrane as shown in the image below. The protein is expressed in chipmunks and other mammals during the winter. What would be the effect of expressing this protein in terms of ATP production?

[c]IE1vcmUgQVRQIHdvdWxkIGJlIHByb2R1Y2VkIGJlY2F1c2UgVUNQIGFsbG93cyBtb3JlIHByb3RvbnMgdG8gZmxvdyB0aHJvdWdoIHRoZSBBVFAgc3ludGhhc2UgY2hhbm5lbC4=[Qq]

[f]IE5vLiBCZWNhdXNlIFVDUCBhbGxvd3MgcHJvdG9ucyB0byBieXBhc3MgdGhlIEFUUCBzeW50aGFzZSwgaXRzIHByZXNlbmNlIG1lYW5zIHRoYXQgZmV3ZXIgcHJvdG9ucyB3aWxsIHBhc3MgdGhyb3VnaCBBVFAgc3ludGhhc2UsIHJlc3VsdGluZyBpbiBsZXNzIEFUUCBwcm9kdWN0aW9uLg==[Qq]

[c]IExlc3MgQVRQIHdvdWxkIGJlIHByb2R1Y2VkIGJlY2F1c2UgVUNQIGFsbG93cyBmZXdl ciBwcm90b25zIHRvIGZsb3cgdGhyb3VnaCB0aGUgQVRQIHN5bnRoYXNlIGNoYW5uZWwu[Qq]

[f]IE5pY2VseSBkb25lISBCZWNhdXNlIFVDUCBhbGxvd3MgcHJvdG9ucyB0byBieXBhc3MgdGhlIEFUUCBzeW50aGFzZSwgdGhlIHByb3RvbnMgdGhhdCBkb27igJl0IGdvIHRocm91Z2ggdGhlIEFUUCBzeW50aGFzZSB3b27igJl0IG1ha2UgQVRQLCByZXN1bHRpbmcgaW4gbGVzcyBBVFAgbWFkZSBpbiBlYWNoIGNlbGwgd2hlcmUgdGhlIFVDUCBnZW5lIGlzIGJlaW5nIGV4cHJlc3NlZC4=[Qq]

[c]IE1vcmUgQVRQIHdvdWxkIGJlIHByb2R1Y2VkIGJlY2F1c2UgVUNQIHB1bXBzIHByb3RvbnMgdXAgdGhlaXIgY29uY2VudHJhdGlvbiBncmFkaWVudC4=[Qq]

[f]IE5vLiBUaGUgVUNQIGNoYW5uZWwgaXMgbm90IGEgcHJvdG9uIHB1bXAuIEl0JiM4MjE3O3MgYSBjaGFubmVsIHRoYXQgYWxsb3dzIHByb3RvbnMgdG8gYnlwYXNzIHRoZSBBVFAgc3ludGhhc2UgY2hhbm5lbC4=[Qq]

[c]IExlc3MgQVRQIHdvdWxkIGJlIHByb2R1Y2VkIGJlY2F1c2UgVUNQIHB1bXBzIHByb3RvbnMgdXAgdGhlaXIgY29uY2VudHJhdGlvbiBncmFkaWVudC4=[Qq]

[f]IE5vLiBUaGUgVUNQIGNoYW5uZWwgaXMgbm90IGEgcHJvdG9uIHB1bXAuIEl0JiM4MjE3O3MgYSBjaGFubmVsIHRoYXQgYWxsb3dzIHByb3RvbnMgdG8gYnlwYXNzIHRoZSBBVFAgc3ludGhhc2UgY2hhbm5lbC4=

Cg==

[Qq]

[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 3 Cumulative Multiple Choice Dataset, v2.0|1bdfd0ab2d6814″ question_number=”18″ unit=”3.Cellular Energetics” topic=”3.6.Respiration”] Researchers conducted an experiment to test the efficiency of ATP production in white-tailed hornets’ wing muscles. They measured ATP production at various flight speeds in a wind tunnel. At the highest speeds, the hornets were exhausted quickly. The results of the experiment are displayed in the diagram below.

Which of the following statements best describes the pattern in the diagram?

[c]IEdsdWNvc2UgaXMgcmVkdWNlZCBhdCBsb3cgZmxpZ2h0IHNwZWVkcyBhbmQgb3hpZGl6ZWQgYXQgaGlnaCBmbGlnaHQgc3BlZWRzLg==[Qq]

[f]IE5vLiBHbHVjb3NlIGlzIGEga2V5IGZ1ZWwgZm9yIGNlbGx1bGFyIHJlc3BpcmF0aW9uLiBMaWtlIGFsbCBmdWVscywgaXQgcmVsZWFzZXMgZW5lcmd5IGJ5IGJlaW5nIG94aWRpemVkIChqdXN0IGFzIGdhc29saW5lIGlzIG94aWRpemVkIGluIGEgY2FyJiM4MjE3O3MgZW5naW5lKS4gVGFrZSBhbm90aGVyIGxvb2sgYXQgdGhlIGRpYWdyYW0sIGFuZCBub3RpY2UgdGhlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIGZsaWdodCBzcGVlZCAob24gdGhlIFggYXhpcykgYW5kIHRoZSBhbW91bnQgb2YgQVRQIHBlciBnbHVjb3NlIChvbiB0aGUgWSBheGlzKS4gQXQgaGlnaCBmbGlnaHQgc3BlZWRzLCB0aGUgYW1vdW50IG9mIEFUUCBwcm9kdWNlZC9nbHVjb3NlIGRyYW1hdGljYWxseSBkcm9wcy4gVGhpbmsgYWJvdXQgY2VsbHVsYXIgcmVzcGlyYXRpb24sIGJvdGggYWVyb2JpYyBhbmQgYW5hZXJvYmljLCBhbmQgc2VlIGlmIHlvdSBjYW4gZmlndXJlIG91dCB3aHku[Qq]

[c]IEdsdWNvc2UgaXMgdGhlIG1haW4gZW5lcmd5IHNvdXJjZSBhdCBsb3cgZmxpZ2h0IHNwZWVkcywgYnV0IG1vcmUgZW5lcmdldGljIG1vbGVjdWxlcyBhcmUgdXNlZCBhdCBoaWdoIGZsaWdodCBzcGVlZHMu[Qq]

[f]IE5vLiBHbHVjb3NlIGNvbnRpbnVlcyB0byBiZSB0aGUgbWFpbiBlbmVyZ3kgc291cmNlIGF0IGFsbCBmbGlnaHQgc3BlZWRzLiBUYWtlIGFub3RoZXIgbG9vayBhdCB0aGUgZGlhZ3JhbSwgYW5kIG5vdGljZSB0aGUgcmVsYXRpb25zaGlwIGJldHdlZW4gZmxpZ2h0IHNwZWVkIChvbiB0aGUgWCBheGlzKSBhbmQgdGhlIGFtb3VudCBvZiBBVFAgcGVyIGdsdWNvc2UgKG9uIHRoZSBZIGF4aXMpLiBBdCBoaWdoIGZsaWdodCBzcGVlZHMsIHRoZSBhbW91bnQgb2YgQVRQIHByb2R1Y2VkL2dsdWNvc2UgZHJhbWF0aWNhbGx5IGRyb3BzLiBUaGluayBhYm91dCBjZWxsdWxhciByZXNwaXJhdGlvbiwgYm90aCBhZXJvYmljIGFuZCBhbmFlcm9iaWMsIGFuZCBzZWUgaWYgeW91IGNhbiBmaWd1cmUgb3V0IHdoeS4=[Qq]

[c]IE94eWdlbiBpcyB0aGUgZmluYWwgZWxlY3Ryb24gYWNjZXB0b3IgYXQgbG93IGZsaWdodCBz cGVlZHMgYW5kIGZlcm1lbnRhdGlvbiBpcyB1c2VkIGF0IGhpZ2ggZmxpZ2h0IHNwZWVkcy4=[Qq]

[f]IFllcy4gQXQgbG93IGZsaWdodCBzcGVlZHMsIHRoZSBtdXNjbGUgY2VsbHMgaW4gdGhlIGhvcm5ldCBhcmUgdXNpbmcgdGhlIGVudGlyZSBhZXJvYmljIHJlc3BpcmF0aW9uIHBhdGh3YXk6IGdseWNvbHlzaXMsIGZvbGxvd2VkIGJ5IHRoZSBsaW5rIHJlYWN0aW9uLCBmb2xsb3dlZCBieSB0aGUgS3JlYnMgY3ljbGUsIGZvbGxvd2VkIGJ5IG94aWRhdGl2ZSBwaG9zcGhvcnlsYXRpb24uIFRoaXMgcGF0aHdheSBjcmVhdGVzIG92ZXIgMzAgQVRQcy9nbHVjb3NlLiBBdCB0aGUgaGlnaGVzdCBmbGlnaHQgc3BlZWRzLCB0aGUgbXVzY2xlcyBhcmUgZXhjZWVkaW5nIHRoZSBjYXBhY2l0eSBvZiB0aGUgaG9ybmV0JiM4MjE3O3MgcmVzcGlyYXRvcnkgc3lzdGVtIHRvIGRlbGl2ZXIgZW5vdWdoIG94eWdlbi4gQXMgYSByZXN1bHQsIHRoZSBob3JuZXQgc3dpdGNoZXMgdG8gYW5hZXJvYmljIHJlc3BpcmF0aW9uLCB3aGljaCB5aWVsZHMgb25seSAyIEFUUCBnbHVjb3NlLg==[Qq]

[c]IEVsZWN0cm9uIHRyYW5zcG9ydCBpcyB1c2VkIGF0IGxvdyBmbGlnaHQgc3BlZWRzLCBidXQgc2xvd3MgZG93biBtZXRhYm9saXNtIGF0IGhpZ2ggZmxpZ2h0IHNwZWVkcy4=[Qq]

[f]IE5vLiBZb3UmIzgyMTc7cmUgcmlnaHQgYWJvdXQgdGhlIGZpcnN0IHBhcnQsIGJ1dCBub3QgdGhlIHNlY29uZC4gVGFrZSBhbm90aGVyIGxvb2sgYXQgdGhlIGRpYWdyYW0sIGFuZCBub3RpY2UgdGhlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIGZsaWdodCBzcGVlZCAob24gdGhlIFggYXhpcykgYW5kIHRoZSBhbW91bnQgb2YgQVRQIHBlciBnbHVjb3NlIChvbiB0aGUgWSBheGlzKS4gQXQgaGlnaCBmbGlnaHQgc3BlZWRzLCB0aGUgYW1vdW50IG9mIEFUUCBwcm9kdWNlZC9nbHVjb3NlIGRyYW1hdGljYWxseSBkcm9wcy4gVGhpbmsgYWJvdXQgY2VsbHVsYXIgcmVzcGlyYXRpb24sIGJvdGggYWVyb2JpYyBhbmQgYW5hZXJvYmljLCBhbmQgc2VlIGlmIHlvdSBjYW4gZmlndXJlIG91dCB3aHku

Cg==

[Qq]

[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 3 Cumulative Multiple Choice Dataset, v2.0|1bdf7f2d8d3c14″ question_number=”19″ unit=”3.Cellular Energetics” topic=”3.6.Respiration”] During cellular respiration, what is the function of the mitochondrion?

[c]IEh5ZHJvbHl6aW5nIEFUUA==[Qq]

[f]IE5vLiBDZWxsdWxhciByZXNwaXJhdGlvbiBpcyBhYm91dCBzeW50aGVzaXppbmcgQVRQLCBub3QgaHlkcm9seXppbmcgaXQuIEhlcmUmIzgyMTc7cyBhIGhpbnQuIExvb2sgYXQgdGhlIGRpYWdyYW0gYmVsb3cuIEV2ZXJ5dGhpbmcgYWZ0ZXIgVyBvY2N1cnMgaW4gdGhlIG1pdG9jaG9uZHJpYS4gV2hhdCBpcyBXLCBhbmQgd2hhdCBoYXBwZW5zIHRvIFcgZHVyaW5nIHRoZSBsaW5rIHJlYWN0aW9uIGFuZCB0aGUgS3JlYnMgY3ljbGU/

Cg==

[Qq]

[c]IE94aWRpemluZyB3YXRlciB0byBveHlnZW4=[Qq]

[f]IE5vLiBUaGUgb3hpZGF0aW9uIG9mIHdhdGVyIGhhcHBlbnMgZHVyaW5nIHRoZSBsaWdodCByZWFjdGlvbnMgb2YgcGhvdG9zeW50aGVzaXMuIFdoYXQgaGFwcGVucyBkdXJpbmcgY2VsbHVsYXIgcmVzcGlyYXRpb24gaXMgdGhhdCBveHlnZW4gaXMgcmVkdWNlZCB0byB3YXRlci4gSGVyZSYjODIxNztzIGEgaGludC4gTG9vayBhdCB0aGUgZGlhZ3JhbSBiZWxvdy4gRXZlcnl0aGluZyBhZnRlciBXIG9jY3VycyBpbiB0aGUgbWl0b2Nob25kcmlhLiBXaGF0IGlzIFcsIGFuZCB3aGF0IGhhcHBlbnMgdG8gVyBkdXJpbmcgdGhlIGxpbmsgcmVhY3Rpb24gYW5kIHRoZSBLcmVicyBjeWNsZT8=

Cg==

[Qq]

[c]IE94aWRpemluZyBweXJ1 dmF0ZSBjb21wbGV0ZWx5[Qq]

[f]IEV4Y2VsbGVudC4gVGhpcyBpcyBhbiB1bnVzdWFsIHdheSBvZiB0aGlua2luZyBvZiB0aGUgbWl0b2Nob25kcmlhJiM4MjE3O3MgZnVuY3Rpb24sIGJ1dCB0aGF0JiM4MjE3O3MgZXhhY3RseSB3aGF0IGl0IGRvZXMuIEJ5IG94aWRpemluZyBweXJ1dmF0ZSAod2hpY2ggaGFwcGVucyBkdXJpbmcgdGhlIGxpbmsgcmVhY3Rpb24gYW5kIHRoZSBLcmVicyBjeWNsZSksIG1pdG9jaG9uZHJpYSBjcmVhdGUgdGhlIE5BREggYW5kIEZBREg=Mg==IHRoYXQgYXJlIHVzZWQgdG8gcG93ZXIgdGhlIG1pdG9jaG9uZHJpYWwgZWxlY3Ryb24gdHJhbnNwb3J0IGNoYWluLCB3aGljaCBpcyB1c2VkIHRvIHN5bnRoZXNpemUgQVRQLiBZb3UgY2FuIHNlZSB0aGlzIGJ5IGZvbGxvd2luZyB0aGUgZmF0ZSBvZiBweXJ1dmF0ZSBpbiB0aGUgZGlhZ3JhbSBiZWxvdy4=

Cg==

[Qq]

[c]IENvbnZlcnRpbmcgZ2x1Y29zZSBpbnRvIHB5cnV2YXRlLg==[Qq]

[f]IE5vLiBUaGF0JiM4MjE3O3Mgd2hhdCBoYXBwZW5zIGR1cmluZyBnbHljb2x5c2lzLCB3aGljaCBvY2N1cnMgaW4gdGhlIGN5dG9wbGFzbSwgbm90IHRoZSBtaXRvY2hvbmRyaWEuIEhlcmUmIzgyMTc7cyBhIGhpbnQuIExvb2sgYXQgdGhlIGRpYWdyYW0gYmVsb3cuIEV2ZXJ5dGhpbmcgYWZ0ZXIgVyBvY2N1cnMgaW4gdGhlIG1pdG9jaG9uZHJpYS4gV2hhdCBpcyBXLCBhbmQgd2hhdCBoYXBwZW5zIHRvIFcgZHVyaW5nIHRoZSBsaW5rIHJlYWN0aW9uIGFuZCB0aGUgS3JlYnMgY3ljbGU/

Cg==

[Qq]

[c]IEdlbmVyYXRpbmcgTkFEUA==Kw==IGZyb20gTkFEUEg=[Qq]

[f]IE5vLiBHZW5lcmF0aW5nIE5BRFA=Kw==IGZyb20gTkFEUEggaGFwcGVucyBkdXJpbmcgdGhlIENhbHZpbiBjeWNsZSwgd2l0aCBOQURQSCYjODIxNztzIHJlZHVjaW5nIHBvd2VyIHVzZWQgdG8gY3JlYXRlIGNhcmJvaHlkcmF0ZXMgZnJvbSBjYXJib24gZGlveGlkZS4gSGVyZSYjODIxNztzIGEgaGludC4gTG9vayBhdCB0aGUgZGlhZ3JhbSBiZWxvdy4gRXZlcnl0aGluZyBhZnRlciBXIG9jY3VycyBpbiB0aGUgbWl0b2Nob25kcmlhLiBXaGF0IGlzIFcsIGFuZCB3aGF0IGhhcHBlbnMgdG8gVyBkdXJpbmcgdGhlIGxpbmsgcmVhY3Rpb24gYW5kIHRoZSBLcmVicyBjeWNsZT8=

Cg==

[Qq]

[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 3 Cumulative Multiple Choice Dataset, v2.0|1bded08e117014″ question_number=”20″ unit=”3.Cellular Energetics” topic=”3.6.Respiration”] Researchers measured oxygen consumption in harbor porpoises that were swimming at three different speeds for one minute and then stopped.

The results are shown in the diagram below. At the slow and medium speeds, the oxygen consumption rates immediately fell when the porpoises stopped swimming. In contrast, the oxygen consumption rate at fast speeds remained at a high level for a short time even after the porpoises stopped swimming.


Which of the following statements best describes what occurred while swimming at fast speeds that explain this difference?

[c]IEFuIG94eWdlbiBkZWJ0 IHdhcyBjcmVhdGVkLg==[Qq]

[f]IENvcnJlY3QuIEJlY2F1c2UgYW4gb3h5Z2VuIGRlYnQgd2FzIGNyZWF0ZWQsIHRoZSBwb3Jwb2lzZXMgbmVlZGVkIHRvIGNvbnRpbnVlIHRvIGNvbnN1bWUgaGlnaCBsZXZlbHMgb2Ygb3h5Z2VuLiBFc3NlbnRpYWxseSwgdGhlIHBvcnBvaXNlcyB3ZXJlIGJyZWF0aGluZyBoYXJkIGFmdGVyIGRvaW5nIGhlYXZ5IGV4ZXJjaXNlLCBqdXN0IGFzIHlvdSBvciBJIHdvdWxkIGRvLg==[Qq]

[c]IFRoZSBlbGVjdHJvbiB0cmFuc3BvcnQgc3lzdGVtIGFjY2VsZXJhdGVkLg==[Qq]

[f]IE5vLiBBcyBsb25nIGFzIGtleSB2YXJpYWJsZXMgc3VjaCBhcyB0ZW1wZXJhdHVyZSwgZnVlbCBzdXBwbHksIGFuZCBveHlnZW4gbGV2ZWxzIGFyZSBoZWxkIGNvbnN0YW50LCB0aGUgZWxlY3Ryb24gdHJhbnNwb3J0IHN5c3RlbSBvcGVyYXRlcyBhdCBwcmV0dHkgbXVjaCB0aGUgc2FtZSBsZXZlbCYjODIzMDtBbmQgdGhhdCBpcyBhIGh1Z2UgaGludCBhcyB0byB3aGF0IHRoZSBjb3JyZWN0IGNob2ljZSBpcywgc28gbm90aWNlIGl0IG5vdywgYW5kIHJlbWVtYmVyIGl0IGZvciB0aGUgbmV4dCB0aW1lIHlvdSBzZWUgdGhpcyBxdWVzdGlvbi4=[Qq]

[c]IFRoZXJlIHdhcyBhIGRlY3JlYXNlIGluIG11c2NsZSB0aXNzdWUgY29uY2VudHJhdGlvbnMgb2YgQVRQLg==[Qq]

[f]IE5vdCBleGFjdGx5LiBXaGV0aGVyIHRoZSBwb3Jwb2lzZXMgYXJlIHN3aW1taW5nIGZhc3Qgb3Igc2xvdywgdGhleSYjODIxNztyZSBjb25zdW1pbmcgQVRQIGFzIHRoZXkgY29udHJhY3QgdGhlaXIgbXVzY2xlcywgYW5kIHJlZ2VuZXJhdGluZyB0aGUgQVRQIHRocm91Z2ggY2VsbHVsYXIgcmVzcGlyYXRpb24uIEJ1dCB3aHksIGFmdGVyIHN3aW1taW5nIGZhc3QsIHdvdWxkIHRoZXkgbmVlZCB0byBjb250aW51ZSB0byBjb25zdW1lIG94eWdlbiBhdCBoaWdoIGxldmVscyBldmVuIGFmdGVyIHN0b3BwaW5nPyBUaGluayBhYm91dCB3aGF0IGhhcHBlbnMgdG8geW91IGFmdGVyIGEgZmFzdCBydW4sIGFuZCB5b3Ugc2hvdWxkIGJlIGFibGUgdG8gZmlndXJlIG91dCB0aGUgYW5zd2VyLg==[Qq]

[c]IE1pdG9jaG9uZHJpYWwgbWVtYnJhbmVzIGJlY2FtZSBpbXBlcm1lYWJsZSB0byBoeWRyb2dlbiBpb25zLg==[Qq]

[f]IE5vLiBNaXRvY2hvbmRyaWFsIG1lbWJyYW5lcyBhcmUgaW1wZXJtZWFibGUgdG8gcHJvdG9ucywgd2l0aCB0aGUgZXhjZXB0aW9uIG9mIG9uZSBjaGFubmVsIGxvY2F0ZWQgb24gdGhlIGlubmVyIG1lbWJyYW5lOiB0aGUgQVRQIHN5bnRoYXNlIGNoYW5uZWwuIEluc3RlYWQgb2YgZm9jdXNpbmcgb24gdGhlIG1pdG9jaG9uZHJpYSwgZm9jdXMgb24gdGhlIGVudGlyZSBvcmdhbmlzbS4gV2h5LCBhZnRlciBzd2ltbWluZyBmYXN0LCB3b3VsZCB0aGUgcG9ycG9pc2VzIG5lZWQgdG8gY29udGludWUgdG8gY29uc3VtZSBveHlnZW4gYXQgaGlnaCBsZXZlbHMgZXZlbiBhZnRlciBzdG9wcGluZz8gVGhpbmsgYWJvdXQgd2hhdCBoYXBwZW5zIHRvIHlvdSBhZnRlciBhIGZhc3QgcnVuLCBhbmQgeW91IHNob3VsZCBiZSBhYmxlIHRvIGZpZ3VyZSBvdXQgdGhlIGFuc3dlci4=[Qq]

[/qwiz]


4. Unit 3 Multiple Choice Quiz 2

[qwiz style=”min-height: 450px !important; width: 550px !important;” dataset=”Unit 3 Cumulative Multiple Choice Quiz Dataset 2″ qrecord_id=”sciencemusicvideosMeister1961-Unit 3 Cumulative Multiple Choice Quiz 2″]

[h] Unit 3 Multiple-Choice Quiz 2

[i]

[q json=”true” xyz=”2″ multiple_choice=”true” unit=”3.Cellular Energetics” dataset_id=”Unit 3 Cumulative Multiple Choice Quiz Dataset 2|be706edcccc60″ question_number=”1″ topic=”3.1-2.Enzyme_Structure_and_Function”] People with chronic high blood pressure have elevated blood levels of ACE (Angiotensin-converting enzyme). ACE acts on the polypeptide Angiotensin I to produce Angiotensin II, which has the effect of raising blood pressure.

The diagram below represents the active site of ACE. The “+” sign represents positively charged regions in the active site.

A pharmaceutical company is trying to develop a drug to lower blood pressure. As part of this effort, a range of drugs was designed and manufactured. A sample of the molecular shape of each is shown below. Notice the “+” and “-” signs, which represent positively and negatively charged regions in the molecules making up the candidate drugs.

 

Which drug is likely to be the most effective in preventing excessive high blood pressure?

[c]IEEg[Qq][c]IE Ig[Qq][c]IEMg[Qq][c]IEQ=

Cg==[Qq]

[f]IE5vLiBXaGF0IHlvdSYjODIxNztyZSBsb29raW5nIGZvciBpcyBhIGRydWcgd2l0aCBhIHNoYXBlIHRoYXQgd2lsbCBlbmFibGUgaXQgdG8gYWN0IGFzIGEgY29tcGV0aXRpdmUgaW5oaWJpdG9yIG9mIEFDRS4gVG8gZG8gdGhhdCwgeW91JiM4MjE3O2xsIG5lZWQgYSBkcnVnIGNhbmRpZGF0ZSB3aXRoIGEgc2hhcGUgYW5kIGNoYXJnZSB0aGF0JiM4MjE3O3MgbW9zdCBjb21wbGVtZW50YXJ5IHRvIEFDRS4gVGFrZSBhIGxvb2sgYXQgdGhlIGZvdXIgZHJ1ZyBjYW5kaWRhdGVzLCBhbmQgZmluZCB0aGUgb25lIHRoYXQgYmVzdCBmaXRzIHRoYXQgZGVzY3JpcHRpb24u[Qq]

[f]IEV4Y2VsbGVudDogRHJ1ZyBCIGhhcyB0aGUgY2hhcmdlcyBhbmQgc2hhcGUgdGhhdCBiZXN0IGNvbXBsZW1lbnQgQUNFLiBUaGlzIHdvdWxkIGVuYWJsZSBEcnVnIEIgdG8gYWN0IGFzIGEgY29tcGV0aXRpdmUgaW5oaWJpdG9yIG9mIEFDRSwgZGVjcmVhc2luZyBpdHMgYWJpbGl0eSB0byBtYWtlIGFuZ2lvdGVuc2luIElJICh3aGljaCByYWlzZXMgYmxvb2QgcHJlc3N1cmUpLg==[Qq]

[f]IE5vLiBXaGF0IHlvdSYjODIxNztyZSBsb29raW5nIGZvciBpcyBhIGRydWcgd2l0aCBhIHNoYXBlIHRoYXQgd2lsbCBlbmFibGUgaXQgdG8gYWN0IGFzIGEgY29tcGV0aXRpdmUgaW5oaWJpdG9yIG9mIEFDRS4gVG8gZG8gdGhhdCwgeW91JiM4MjE3O2xsIG5lZWQgYSBkcnVnIGNhbmRpZGF0ZSB3aXRoIGEgc2hhcGUgYW5kIGNoYXJnZSB0aGF0JiM4MjE3O3MgbW9zdCBjb21wbGVtZW50YXJ5IHRvIEFDRS4gVGFrZSBhIGxvb2sgYXQgdGhlIGZvdXIgZHJ1ZyBjYW5kaWRhdGVzLCBhbmQgZmluZCB0aGUgb25lIHRoYXQgYmVzdCBmaXRzIHRoYXQgZGVzY3JpcHRpb24u[Qq]

[f]IE5vLCBidXQgeW91JiM4MjE3O3JlIGNsb3NlLiBXaGF0IHlvdSYjODIxNztyZSBsb29raW5nIGZvciBpcyBhIGRydWcgd2l0aCBhIHNoYXBlIHRoYXQgd2lsbCBlbmFibGUgaXQgdG8gYWN0IGFzIGEgY29tcGV0aXRpdmUgaW5oaWJpdG9yIG9mIEFDRS4gVG8gZG8gdGhhdCwgeW91JiM4MjE3O2xsIG5lZWQgYSBkcnVnIGNhbmRpZGF0ZSB3aXRoIGEgc2hhcGUgYW5kIGNoYXJnZSB0aGF0JiM4MjE3O3MgbW9zdCBjb21wbGVtZW50YXJ5IHRvIEFDRS4gWW91JiM4MjE3O3ZlIGNob3NlbiBhIGdvb2Qgc2hhcGUsIGJ1dCB5b3UgbmVlZCB0byBiZSBtb3JlIGNhcmVmdWwgYWJvdXQgdGhlIGNoYXJnZS4=

Cg==

[Qq]

[q json=”true” multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.1-2.Enzyme_Structure_and_Function” dataset_id=”Unit 3 Cumulative Multiple Choice Quiz Dataset 2|be6efa555e460″ question_number=”2″] The model below shows an enzyme interacting with its substrate.

The interactions between the enzyme and the substrate, when they form an enzyme-substrate complex, can include all of the following except for

[c]IGh5ZHJvZ2VuIGJvbmRz[Qq]

[f]IE5vLiBIeWRyb2dlbiBib25kcyBjYW4gb2NjdXIgYmV0d2VlbiBlbnp5bWVzIGFuZCBzdWJzdHJhdGVzLg==[Qq]

[c]IGh5ZHJvcGhvYmljIGludGVyYWN0aW9ucw==[Qq]

[f]IE5vLiBIeWRyb3Bob2JpYyBpbnRlcmFjdGlvbnMgY2FuIG9jY3VyIGJldHdlZW4gZW56eW1lcyBhbmQgc3Vic3RyYXRlcy4=[Qq]

[c]IGlvbmljIGJvbmRz[Qq]

[f]IE5vLiBBIG5lZ2F0aXZlbHkgY2hhcmdlZCBwYXJ0IG9mIGEgc3Vic3RyYXRlIGNhbiB0ZW1wb3JhcmlseSBiaW5kIHdpdGggYSBwb3NpdGl2ZWx5IGNoYXJnZWQgcGFydCBvZiBhbiBlbnp5bWUsIGFuZCB2aWNlIHZlcnNhLg==[Qq]

[c]IHBlcHRpZG UgYm9uZHM=[Qq]

[f]IFdheSB0byBnby4gUGVwdGlkZSBib25kcyBhcmUgdGhlIGJvbmRzIHRoYXQgaG9sZCB0b2dldGhlciB0aGUgYW1pbm8gYWNpZHMgbWFraW5nIHVwIGEgcG9seXBlcHRpZGUgY2hhaW4uwqAgVGhleSYjODIxNztkIGJlIGZvdW5kIHdpdGhpbiBhbiBlbnp5bWUsIGJ1dCBuZXZlciBiZXR3ZWVuIGFuIGVuenltZSBhbmQgYSBzdWJzdHJhdGUu

Cg==

[Qq]

[q json=”true” multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.3.Environmental_Impacts_on_Enzyme_Function” dataset_id=”Unit 3 Cumulative Multiple Choice Quiz Dataset 2|be6972b920c60″ question_number=”3″] A team of students is testing the effect of changes in pH on the function of an enzyme. During their experiment, they plan to use a base and an acid to increase or decrease the pH of a solution, then add the enzyme and substrate to the solution and measure the amount of product formed after a set time interval.

Which of the following must remain constant over the course of the experiment?

[c]IHRoZSBwSCBvZiB0aGUgc29sdXRpb24u[Qq]

[f]IE5vLiBUaGUgcEggaXMgdGhlIGluZGVwZW5kZW50IHZhcmlhYmxlLCBhbmQgaXQmIzgyMTc7cyB3aGF0IHdpbGwgdmFyeSB0aHJvdWdoIHRoZSB2YXJpb3VzIGV4cGVyaW1lbnRhbCB0cmlhbHMu[Qq]

[c]IFRoZSBhbW91bnQgb2YgcHJvZHVjdCBmb3JtZWQu[Qq]

[f]IE5vLiBUaGUgYW1vdW50IG9mIHByb2R1Y3QgaXMgdGhlIGRlcGVuZGVudCB2YXJpYWJsZSwgYW5kIGl0JiM4MjE3O2xsIGNoYW5nZSBiYXNlZCBvbiB0aGUgcEggb2YgdGhlIHNvbHV0aW9uLg==[Qq]

[c]IFRoZSBpbml0aWFsIHN1YnN0cm F0ZSBjb25jZW50cmF0aW9uLg==[Qq]

[f]IEV4YWN0bHkuIFRvIHNlZSB0aGUgZWZmZWN0IG9mIHZhcnlpbmcgdGhlIHBILCB0aGUgaW5pdGlhbCBjb25jZW50cmF0aW9uIG9mIHRoZSBzdWJzdHJhdGUgd2lsbCBoYXZlIHRvIGJlIHRoZSBzYW1lLg==[Qq]

[c]IFRoZSBsZXZlbCBvZiBlbnp5bWUgZGVuYXR1cmF0aW9u[Qq]

[f]IE5vLiBUaGlzIGlzIGFuIGV4cGVyaW1lbnQgYWJvdXQgZGVuYXR1cmF0aW9uLiBBdCBvbmUgb2YgdGhlIHBIcywgdGhlIGVuenltZSB3aWxsIGJlIGNhdGFseXppbmcgYW4gb3B0aW1hbCBhbW91bnQgb2YgcHJvZHVjdC4gQXQgb3RoZXIgcEhzLCB0aGUgZW56eW1lIHdpbGwgc3RhcnQgdG8gZGVuYXR1cmUgYW5kIHByb2R1Y2UgbGVzcyBwcm9kdWN0Lg==

Cg==

[Qq]

[q json=”true” multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.3.Environmental_Impacts_on_Enzyme_Function” dataset_id=”Unit 3 Cumulative Multiple Choice Quiz Dataset 2|be68237270860″ question_number=”4″] Which of the graphs below best represents the relationship between temperature and enzyme activity?

Which of the following graphs will most likely represent their results?

[c]IDEg[Qq][c]ID Ig[Qq][c]IDMg[Qq][c]IDQ=

Cg==[Qq]

[f]IE5vLiBGb3IgbW9zdCBlbnp5bWVzLCBhY3Rpdml0eSBpbmNyZWFzZXMgd2l0aCBpbmNyZWFzaW5nIHRlbXBlcmF0dXJlIHVudGlsIGVuenltZSBhY3Rpdml0eSByZWFjaGVzIGFuIG9wdGltYWwgbGV2ZWwuIEFib3ZlIHRoYXQgb3B0aW11bSB0ZW1wZXJhdHVyZSwgdG9vIG11Y2ggaGVhdCB3aW5kcyB1cCBkZW5hdHVyaW5nIHRoZSBlbnp5bWUsIGNhdXNpbmcgaXQgdG8gYWJydXB0bHkgbG9zZSBpdHMgYWN0aXZpdHkuIFdoaWNoIGdyYXBoIGZpdHMgdGhhdCBkZXNjcmlwdGlvbj8=[Qq]

[f]IFdheSB0byBnby4gQXMgc2hvd24gaW4gR3JhcGggMiwgZm9yIG1vc3QgZW56eW1lcywgYWN0aXZpdHkgaW5jcmVhc2VzIHdpdGggaW5jcmVhc2luZyB0ZW1wZXJhdHVyZSB1bnRpbCBlbnp5bWUgYWN0aXZpdHkgcmVhY2hlcyBhbiBvcHRpbWFsIGxldmVsLiBBYm92ZSB0aGF0IG9wdGltdW0gdGVtcGVyYXR1cmUsIHRvbyBtdWNoIGhlYXQgZGVuYXR1cmVzIHRoZSBlbnp5bWUsIGNhdXNpbmcgaXQgdG8gYWJydXB0bHkgbG9zZSBpdHMgYWN0aXZpdHku[Qq]

[f]IE5vLiBHcmFwaCAzIHNob3dzIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiBlbnp5bWUgYWN0aXZpdHkgYW5kIHBILg==

Cg==

SGVyZSYjODIxNztzIGEgaGludC4gRm9yIG1vc3QgZW56eW1lcywgYWN0aXZpdHkgaW5jcmVhc2VzIHdpdGggaW5jcmVhc2luZyB0ZW1wZXJhdHVyZSB1bnRpbCBlbnp5bWUgYWN0aXZpdHkgcmVhY2hlcyBhbiBvcHRpbWFsIGxldmVsLiBBYm92ZSB0aGF0IG9wdGltdW0gdGVtcGVyYXR1cmUsIHRvbyBtdWNoIGhlYXQgZGVuYXR1cmVzIHRoZSBlbnp5bWUsIGNhdXNpbmcgaXQgdG8gYWJydXB0bHkgbG9zZSBpdHMgYWN0aXZpdHkuIFdoaWNoIGdyYXBoIGZpdHMgdGhhdCBkZXNjcmlwdGlvbj8=[Qq]

[f]IE5vLiBHcmFwaCA0IHNob3dzIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiBlbnp5bWUgYWN0aXZpdHkgYW5kIHN1YnN0cmF0ZSBjb25jZW50cmF0aW9uLg==

Cg==

SGVyZSYjODIxNztzIGEgaGludC4gRm9yIG1vc3QgZW56eW1lcywgYWN0aXZpdHkgaW5jcmVhc2VzIHdpdGggaW5jcmVhc2luZyB0ZW1wZXJhdHVyZSB1bnRpbCBlbnp5bWUgYWN0aXZpdHkgcmVhY2hlcyBhbiBvcHRpbWFsIGxldmVsLiBBYm92ZSB0aGF0IG9wdGltdW0gdGVtcGVyYXR1cmUsIHRvbyBtdWNoIGhlYXQgZGVuYXR1cmVzIHRoZSBlbnp5bWUsIGNhdXNpbmcgaXQgdG8gYWJydXB0bHkgbG9zZSBpdHMgYWN0aXZpdHkuIFdoaWNoIGdyYXBoIGZpdHMgdGhhdCBkZXNjcmlwdGlvbj8=

Cg==

[Qq]

[q json=”true” xyz=”2″ multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.3.Environmental_Impacts_on_Enzyme_Function” dataset_id=”Unit 3 Cumulative Multiple Choice Quiz Dataset 2|be66aeeb02060″ question_number=”5″] The diagram below shows the enzyme-catalyzed breakdown of sucrose into glucose and fructose by the enzyme sucrase.

Sucralose (shown on the left) is a calorie-free artificial sweetener.  Assume that it has the same shape and charge as sucrose but is not broken down by sucrase.

If someone ate sucrose and sucralose at the same time, what effect would the presence of sucralose have on the activity of sucrase?

[c]IFN1Y3JhbG9zZSB3b3VsZCBoYXZlIG5vIGVmZmVjdCBvbiB0aGUgYWN0aXZpdHkgb2Ygc3VjcmFzZS4=[Qq]

[f]IE5vLiBJZiBzdWNyYWxvc2UgaGFzIHRoZSBzYW1lIHNoYXBlIGFuZCBjaGFyZ2UgYXMgc3Vjcm9zZSwgaXQgd291bGQgcHJvYmFibHkgZml0IGludG8gc3VjcmFzZSYjODIxNztzIGFjdGl2ZSBzaXRlLiBXaGF0IGVmZmVjdCBtaWdodCB0aGUgcHJlc2VuY2Ugb2Ygc3VjcmFsb3NlIGhhdmUgb24gdGhlIGFiaWxpdHkgb2Ygc3VjcmFzZSB0byBjaGFuZ2Ugc3Vjcm9zZSBpbnRvIGZydWN0b3NlIGFuZCBnbHVjb3NlPw==[Qq]

[c]IFN1Y3JhbG9zZSB3b3VsZCBiZSBicm9rZW4gZG93biBpbnRvIGZydWN0b3NlIGFuZCBnbHVjb3NlLg==[Qq]

[f]IE5vLiBJdCYjODIxNztzIGluZGljYXRlZCBpbiB0aGUgcXVlc3Rpb24gdGhhdCBzdWNyYWxvc2UgaXNuJiM4MjE3O3QgYnJva2VuIGRvd24gYnkgc3VjcmFzZS7CoEhlcmUmIzgyMTc7cyBhIGhpbnQuIElmIHN1Y3JhbG9zZSBoYXMgdGhlIHNhbWUgc2hhcGUgYW5kIGNoYXJnZSBhcyBzdWNyb3NlLCBpdCB3b3VsZCBwcm9iYWJseSBmaXQgaW50byBzdWNyYXNlJiM4MjE3O3MgYWN0aXZlIHNpdGUuIFdoYXQgZWZmZWN0IG1pZ2h0IHRoZSBwcmVzZW5jZSBvZiBzdWNyYWxvc2UgaGF2ZSBvbiB0aGUgYWJpbGl0eSBvZiBzdWNyYXNlIHRvIGNoYW5nZSBzdWNyb3NlIGludG8gZnJ1Y3Rvc2UgYW5kIGdsdWNvc2U/[Qq]

[c]IFN1Y3JhbG9zZSB3b3VsZCBjb21wZXRlIGZvciB0aGUgYWN0aX ZlIHNpdGUgYW5kIHJlZHVjZSB0aGUgcmVhY3Rpb24gcmF0ZS4=[Qq]

[f]IE5pY2UhIEJlY2F1c2Ugc3VjcmFsb3NlIGhhcyB0aGUgc2FtZSBzaGFwZSBhcyBzdWNyb3NlLCB3ZSBjYW4gZXhwZWN0IGl0IHRvIGZpdCB0aGUgc2FtZSBhY3RpdmUgc2l0ZS7CoCBBcyBhIHJlc3VsdCwgc3VjcmFsb3NlIHdpbGwgY29tcGV0ZSBmb3IgdGhlIGFjdGl2ZSBzaXRlIHdpdGggc3Vjcm9zZS7CoCBUaGF0LCBpbiB0dXJuLCB3b3VsZCBkZWNyZWFzZSB0aGUgYWJpbGl0eSBvZiBzdWNyYXNlIHRvIGNvbnZlcnQgc3Vjcm9zZSBpbnRvIGdsdWNvc2UgYW5kIGZydWN0b3NlLg==[Qq]

[c]IFN1Y3JhbG9zZSB3b3VsZCBlbmhhbmNlIHN1Y3Jhc2UmIzgyMTc7cyBhY3Rpdml0eSBieSBlbnN1cmluZyB0aGF0IHRoZSBhY3RpdmUgc2l0ZSByZW1haW5lZCBvY2N1cGllZC4=[Qq]

[f]IE5vLiBUaGUgc2NlbmFyaW8gYWJvdmUgaXMgYW4gZXhhbXBsZSBvZiBjb21wZXRpdGl2ZSBpbmhpYml0aW9uLiBPY2N1cHlpbmcgdGhlIGFjdGl2ZSBzaXRlIHdvdWxkIA==ZGVjcmVhc2U=IHN1Y3Jhc2UmIzgyMTc7cyBhYmlsaXR5IHRvIGNvbnZlcnQgc3Vjcm9zZSBpbnRvIGdsdWNvc2UgYW5kIGZydWN0b3NlLCBub3QgaW5jcmVhc2UgaXQuIFdpdGggdGhhdCBpbiBtaW5kLCB3aGF0IHdvdWxkIGJlIHRoZSBlZmZlY3Qgb2YgdGhlIHByZXNlbmNlIG9mIHN1Y3JhbG9zZT8=

Cg==

[Qq]

[q json=”true” multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.4.Cellular_Energy” dataset_id=”Unit 3 Cumulative Multiple Choice Quiz Dataset 2|be655fa451c60″ question_number=”6″] The diagram below shows how

[c]IHBob3NwaG9yeWxhdGlvbiBvZiBBVFAgaXMgdXNlZCB0byBjcmVhdGUgY2FyYm9oeWRyYXRlcyBkdXJpbmcgcGhvdG9zeW50aGVzaXMu[Qq]

[f]IE5vLiBEdXJpbmcgdGhlIGxpZ2h0IHJlYWN0aW9ucyBvZiBwaG90b3N5bnRoZXNpcywgQURQIGlzIHBob3NwaG9yeWxhdGVkIHRvIGJlY29tZSBBVFAuIER1cmluZyB0aGUgQ2FsdmluIGN5Y2xlLCBBVFAgbG9zZXMgYSBwaG9zcGhhdGUgZ3JvdXAgdG8gYmVjb21lIEFEUCBhbmQgUGksIHdoaWNoIHBvd2VycyBjYXJib2h5ZHJhdGUgZm9ybWF0aW9uLg==

Cg==

[Qq]

Here’s a hint for the next time you see this question: how does the energy released in reaction 1 power reaction 4, which requires energy?

[c]IEFUUCBpcyB1c2VkIHRvIGNvdXBsZSBleGVyZ29uaWMgcH JvY2Vzc2VzIHdpdGggZW5kZXJnb25pYyBwcm9jZXNzZXMu[Qq]

[f]IE5pY2VseSBkb25lLiBBVFAgaXMgbGlmZSYjODIxNztzIGVuZXJneSBjYXJyaWVyLCBjb3VwbGluZyBleGVyZ29uaWMgcHJvY2Vzc2VzIChsaWtlIGNlbGx1bGFyIHJlc3BpcmF0aW9uKSB0byBlbmRlcmdvbmljIG9uZXMgKGxpa2UgZGVoeWRyYXRpb24gc3ludGhlc2lzIHJlYWN0aW9ucywgZ3Jvd3RoLCByZXBhaXIsIG1vdmVtZW50LCByZXByb2R1Y3Rpb24sIGV0Yy4pLg==[Qq]

[c]IEluIG1ldGFib2xpYyByZWFjdGlvbnMsIHRoZSByZWFjdGFudHMgaGF2ZSBtb3JlIGVuZXJneSB0aGFuIHRoZSBwcm9kdWN0cy4=[Qq]

[f]IE5vLiBJbiBhbnkgZW5kZXJnb25pYyBwcm9jZXNzIChzdWNoIGFzIGNyZWF0aW5nIHBvbHltZXJzIGZyb20gbW9ub21lcnMpLCB0aGUgcmVhY3RhbnRzIGhhdmUgbGVzcw==IGVuZXJneSB0aGFuIHRoZSBwcm9kdWN0cy4gSGVyZSYjODIxNztzIGEgaGludCBmb3IgdGhlIG5leHQgdGltZSB5b3Ugc2VlIHRoaXMgcXVlc3Rpb246IGhvdyBkb2VzIHRoZSBlbmVyZ3kgcmVsZWFzZWQgaW4gcmVhY3Rpb24gMSBwb3dlciByZWFjdGlvbiA0LCB3aGljaCByZXF1aXJlcyBlbmVyZ3k/[Qq]

[c]IGR1cmluZyByZXNwaXJhdGlvbiwgbWl0b2Nob25kcmlhbCBlbnp5bWVzIGNvbnZlcnQgY2FyYm9uIGRpb3hpZGUgYW5kIHdhdGVyIGludG8gZ2x1Y29zZS4=[Qq]

[f]IE5vLiBEdXJpbmcgcmVzcGlyYXRpb24sIGdsdWNvc2UgaXMgY29udmVydGVkIGludG8gY2FyYm9uIGRpb3hpZGUgYW5kIHdhdGVyIGFzIEFEUCBhbmQgUGkgYXJlIGNvbnZlcnRlZCBpbnRvIEFUUC4gSGVyZSYjODIxNztzIGEgaGludCBmb3IgdGhlIG5leHQgdGltZSB5b3Ugc2VlIHRoaXMgcXVlc3Rpb246IGhvdyBkb2VzIHRoZSBlbmVyZ3kgcmVsZWFzZWQgaW4gcmVhY3Rpb24gMSBwb3dlciByZWFjdGlvbiA0LCB3aGljaCByZXF1aXJlcyBlbmVyZ3k/

Cg==

[Qq]

[q json=”true” multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.4.Cellular_Energy” dataset_id=”Unit 3 Cumulative Multiple Choice Quiz Dataset 2|be63eb1ce3460″ question_number=”7″] To power many of the endergonic processes that occur in cells, the bond that is broken in the molecule below is the one at

[c]IE Eg[Qq][c]IEIg[Qq][c]IEMg[Qq][c]IEQg[Qq][c]IEU=

Cg==[Qq]

[f]IE5pY2Ugam9iLiBCcmVha2luZyB0aGUgYm9uZCBhdCAmIzgyMjA7QSYjODIyMTsgaXMgaG93IEFUUCBpcyB1c2VkIHRvIHRyYW5zZmVyIHBob3NwaGF0ZSBncm91cHMgb250byBvdGhlciBtb2xlY3VsZXMgZHVyaW5nIGVuZGVyZ29uaWMgcHJvY2Vzc2VzLg==[Qq]

[f]IE5vLiBZb3UmIzgyMTc7cmUgbG9va2luZyBmb3IgYSBib25kIHRoYXQsIGlmIGJyb2tlbiwgd291bGQgY29udmVydCBBVFAgdG8gQURQIGFuZCBhIHBob3NwaGF0ZSBncm91cC4=[Qq]

[f]IE5vLiBZb3UmIzgyMTc7cmUgbG9va2luZyBmb3IgYSBib25kIHRoYXQsIGlmIGJyb2tlbiwgd291bGQgY29udmVydCBBVFAgdG8gQURQIGFuZCBhIHBob3NwaGF0ZSBncm91cC4=[Qq]

[f]IE5vLiBZb3UmIzgyMTc7cmUgbG9va2luZyBmb3IgYSBib25kIHRoYXQgaW52b2x2ZXMgb25lIG9mIEFUUCYjODIxNztzIHBob3NwaGF0ZSBncm91cHMu[Qq]

[f]IE5vLiBZb3UmIzgyMTc7cmUgbG9va2luZyBmb3IgYSBib25kIHRoYXQgaW52b2x2ZXMgb25lIG9mIEFUUCYjODIxNztzIHBob3NwaGF0ZSBncm91cHMu

Cg==

[Qq]

[q json=”true” xyz=”2″ multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.5.Photosynthesis” dataset_id=”Unit 3 Cumulative Multiple Choice Quiz Dataset 2|be625154b6860″ question_number=”8″] The diagram below shows the photosynthetic electron transport system found in the thylakoid membrane.  Imagine that photosystem II (PSII) was inserted in the thylakoid membrane in the opposite orientation so that the oxygen-evolving complex was in the stroma, instead of the thylakoid lumen (or “space”).  Which of the following would be the result?

[c]IE1vcmUgQVRQIHdvdWxkIGJlIHByb2R1Y2VkIGJlY2F1c2UgdGhlIGh5ZHJvZ2VuIGlvbnMgcHJvZHVjZWQgd291bGQgYWxyZWFkeSBiZSBpbiB0aGUgc3Ryb21hLg==[Qq]

[f]IE5vLiBMb29rIGFnYWluIGF0IHRoZSBkaWFncmFtIGFib3ZlLiBXaGVuIHdhdGVyIGlzIHNwbGl0IGFwYXJ0IGJ5IHRoZSBveHlnZW4tZXZvbHZpbmcgY29tcGxleCwgdGhlIGh5ZHJvZ2VuIGlvbnMgYXJlIHJlbGVhc2VkIGludG8gdGhlIHRoeWxha29pZCBzcGFjZS4gVGhlc2UgaHlkcm9nZW4gaW9ucyBhZGQgdG8gdGhlIGdyYWRpZW50IHRoYXQgZHJpdmVzIEFUUCBzeW50aGVzaXMgYXMgdGhleSBkaWZmdXNlIHRocm91Z2ggdGhlIEFUUCBzeW50aGFzZSBjaGFubmVsLiBXaGF0IHdvdWxkIGhhcHBlbiBpZiB0aGUgb3h5Z2VuLWV2b2x2aW5nIGNvbXBsZXggcmVsZWFzZWQgaHlkcm9nZW4gaW9ucyBpbnRvIHRoZSBzdHJvbWEgaW5zdGVhZD8=[Qq]

[c]IExlc3MgQVRQIHdvdWxkIGJlIHByb2R1Y2VkIGJlY2F1c2UgdGhlIGNvbmNlbnRyYXRpb24gZ3JhZGllbnQgb2YgaHlkcm9nZW4gaW9ucyB3b3VsZCBiZSBzdGVlcGVyLg==[Qq]

[f]IE5vLiBMb29rIGFnYWluIGF0IHRoZSBkaWFncmFtIGFib3ZlLiBXaGVuIHdhdGVyIGlzIHNwbGl0IGFwYXJ0IGJ5IHRoZSBveHlnZW4tZXZvbHZpbmcgY29tcGxleCwgdGhlIGh5ZHJvZ2VuIGlvbnMgYXJlIHJlbGVhc2VkIGludG8gdGhlIHRoeWxha29pZCBzcGFjZS4gVGhlc2UgaHlkcm9nZW4gaW9ucyBhZGQgdG8gdGhlIGdyYWRpZW50IHRoYXQgZHJpdmVzIEFUUCBzeW50aGVzaXMgYXMgdGhleSBkaWZmdXNlIHRocm91Z2ggdGhlIEFUUCBzeW50aGFzZSBjaGFubmVsLg==

Cg==

SWYgdGhlIG94eWdlbi1ldm9sdmluZyBjb21wbGV4IHJlbGVhc2VkIGh5ZHJvZ2VuIGlvbnMgaW50byB0aGUgc3Ryb21hLCBob3cgd291bGQgdGhhdCBhZmZlY3QgdGhlIGh5ZHJvZ2VuIGlvbiBncmFkaWVudCBiZXR3ZWVuIHRoZSB0aHlsYWtvaWQgc3BhY2UgYW5kIHRoZSBzdHJvbWEsIGFuZCBob3cgd291bGQgdGhhdCBhZmZlY3QgQVRQIHN5bnRoZXNpcz8=[Qq]

[c]IExlc3MgQVRQIHdvdWxkIGJlIHByb2R1Y2VkIGJlY2F1c2UgdGhlIGNvbmNlbnRyYXRp b24gZ3JhZGllbnQgb2YgaHlkcm9nZW4gaW9ucyB3b3VsZCBub3QgYmUgYXMgc3RlZXAu[Qq]

[f]IFdheSB0byBnbyEgV2hlbiBwaG90b3N5c3RlbSBJSSBzcGxpdHMgd2F0ZXIgdG8gaGFydmVzdCBlbGVjdHJvbnMsIGl0IGFsc28gZ2VuZXJhdGVzIGh5ZHJvZ2VuIGlvbnMuwqAgQmVjYXVzZSB0aGVzZSBoeWRyb2dlbiBpb25zIGFyZSBub3JtYWxseSBpbiB0aGUgdGh5bGFrb2lkIGx1bWVuLCB0aGV5IGNhbiBiZSB1c2VkIHRvIG1ha2UgdGhlIGh5ZHJvZ2VuIGdyYWRpZW50IHN0ZWVwZXIsIHdoaWNoIGRyaXZlcyBtb3JlIEFUUCBzeW50aGVzaXMgYXMgdGhlc2UgaHlkcm9nZW4gaW9ucyBkaWZmdXNlIHRocm91Z2ggdGhlIEFUUCBzeW50aGFzZSBjaGFubmVsLsKgIElmIHRoZSBwaG90b3N5c3RlbSB3ZXJlIGludmVydGVkLCB0aGUgaHlkcm9nZW4gaW9ucyB3b3VsZCBiZSBwcm9kdWNlZCBpbiB0aGUgc3Ryb21hIHdoaWNoIHdvdWxkIG1ha2UgdGhlIHBIIGdyYWRpZW50IGxlc3Mgc3RlZXAu[Qq]

[c]IFRoZXJlIHdvdWxkIGJlIG5vIGltcGFjdCBvbiBBVFAgcHJvZHVjdGlvbiBiZWNhdXNlIHBsYXN0b3F1aW5vbmUgd291bGQgc3RpbGwgcHVtcCBoeWRyb2dlbiBpb25zIGFjcm9zcyB0aGUgbWVtYnJhbmUu[Qq]

[f]IE5vIFdoaWxlIGl0JiM4MjE3O3MgdHJ1ZSB0aGF0IHBsYXN0b3F1aW5vbmUgd291bGQgc3RpbGwgcHVtcCBoeWRyb2dlbiBpb25zIGFjcm9zcyB0aGUgbWVtYnJhbmUsIHlvdSBoYXZlIHRvIHJlbWVtYmVyIHRoYXQgdGhlcmUgYXJlIHR3byBwcm9jZXNzZXMgdGhhdCBjcmVhdGUgdGhlIGh5ZHJvZ2VuIGlvbiBncmFkaWVudCB0aGF0IGRyaXZlcyBBVFAgc3ludGhlc2lzLiBQcm90b24gcHVtcHMgbGlrZSBwbGFzdG9xdWlub25lIGFyZSBvbmUuIFRoZSBvdGhlciBpcyB0aGUgc3BsaXR0aW5nIG9mIHdhdGVyIHRoYXQmIzgyMTc7cyBhc3NvY2lhdGVkIHdpdGggdGhlIG94eWdlbi1ldm9sdmluZyBjb21wbGV4Lg==

Cg==

TG9vayBhZ2FpbiBhdCB0aGUgZGlhZ3JhbSBhYm92ZS4gV2hlbiB3YXRlciBpcyBzcGxpdCBhcGFydCBieSB0aGUgb3h5Z2VuLWV2b2x2aW5nIGNvbXBsZXgsIHRoZSBoeWRyb2dlbiBpb25zIGFyZSByZWxlYXNlZCBpbnRvIHRoZSB0aHlsYWtvaWQgc3BhY2UuIFRoZXNlIGh5ZHJvZ2VuIGlvbnMgYWRkIHRvIHRoZSBncmFkaWVudCB0aGF0IGRyaXZlcyBBVFAgc3ludGhlc2lzIGFzIHRoZXkgZGlmZnVzZSB0aHJvdWdoIHRoZSBBVFAgc3ludGhhc2UgY2hhbm5lbC4gV2hhdCB3b3VsZCBoYXBwZW4gaWYgdGhlIG94eWdlbi1ldm9sdmluZyBjb21wbGV4IHJlbGVhc2VkIGh5ZHJvZ2VuIGlvbnMgaW50byB0aGUgc3Ryb21hIGluc3RlYWQ/

Cg==

[Qq]

[q json=”true” xyz=”2″ multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.5.Photosynthesis” dataset_id=”Unit 3 Cumulative Multiple Choice Quiz Dataset 2|be61020e06460″ question_number=”9″] The diagram below shows the amount of light on the x-axis and the amount of carbon fixed on the Y-axis.  Most plants reach a point where increasing light intensity does not lead to any additional carbon fixation.  This is called the light saturation point.  Which of the following explains this result?

[c]IEFzIHRoZSBsaW5lIGZsYXR0ZW5zIG91dCwgdGhlIHBob3Rvc3lzdGVtcyBiZWNvbWUgZGVuYXR1cmVkLCBhbmQgZWxlY3Ryb24gZmxvdyBjZWFzZXMu[Qq]

[f]IE5vLiBJZiB0aGUgcGhvdG9zeXN0ZW1zIHdlcmUgZGVuYXR1cmVkLCB0aGVuIHRoZSByYXRlIG9mIHBob3Rvc3ludGhlc2lzIChpbmRpY2F0ZWQgYnkgdGhlIHJhdGUgb2YgdXB0YWtlIG9mIENPMg==KSB3b3VsZCBkcm9wIHRvIHplcm8u[Qq]

[c]IFRoZSBwcm90ZWlucyBpbnZvbHZlZCBpbiB0aGUgbGlnaHQgcmVhY3Rpb25zIGJlY29tZSBtdXRhdGVkIGJ5IHRoZSBpbnRlbnNpdHkgb2YgdGhlIGxpZ2h0IGVuZXJneS4=[Qq]

[f]IFRoaXMgaXMgaW5jb3JyZWN0IGZvciB0d28gcmVhc29ucy4gRmlyc3Qgb2YgYWxsLCBvbmx5IEROQSBhbmQgUk5BIG11dGF0ZS4gUHJvdGVpbnMgZGVuYXR1cmUuIFNlY29uZGx5LCB5b3UgY2FuIHRlbGwgdGhhdCB0aGUgcHJvdGVpbnMgYXJlbiYjODIxNzt0IGRlbmF0dXJlZCwgYmVjYXVzZSBwaG90b3N5bnRoZXNpcyBpcyBjb250aW51aW5nIHRvIG9jY3VyICh0aG91Z2ggaXQmIzgyMTc7cyBubyBsb25nZXIgaW5jcmVhc2luZyku[Qq]

[c]IEFzIGxpZ2h0IGludGVuc2l0eSBpbmNyZWFzZXMsIG1pdG9jaG9uZHJpYWwgcmVzcGlyYXRpb24gaW5jcmVhc2VzLCByZWxlYXNpbmcgbW9yZSBjYXJib24gZGlveGlkZS4gVGhpcyBiYWxhbmNlcyB0aGUgYW1vdW50IG9mIGNhcmJvbiBkaW94aWRlIHRoYXQmIzgyMTc7cyBiZWluZyBmaXhlZC4=[Qq]

[f]IE5vLiBUaGVyZSBpcyBubyBpbmRpY2F0aW9uIHRoYXQgbWl0b2Nob25kcmlhbCByZXNwaXJhdGlvbiBpcyBpbmNyZWFzZWQgYXQgaGlnaCBsaWdodCBsZXZlbHMu[Qq]

[c]IEFsbCBvZiB0aGUgcGhvdG9zeXN0ZW1zIGFyZSBjb25zdGFudGx5IGFjdGl2YXRlZCBieS BwaG90b25zLCBzbyBubyBhZGRpdGlvbmFsIHBob3RvbnMgY2FuIGJlIGFic29yYmVkLg==[Qq]

[f]IE5pY2Ugam9iLiBJZiBhbGwgb2YgdGhlIHBob3Rvc3lzdGVtcyBhcmUgY29uc3RhbnRseSBleGNpdGVkIGJ5IHBob3RvbnMsIG5vIHBob3Rvc3lzdGVtcyBoYXZlIGFuIG9wZW4gc3BvdCB0byBhYnNvcmIgYWRkaXRpb25hbCBwaG90b25zLiBUaGUgbGlnaHQgd291bGQgc2ltcGx5IHBhc3MgdGhyb3VnaCB0aGUgcGxhbnQu

Cg==

Cg==

[Qq]

[q json=”true” xyz=”2″ multiple_choice=”true” unit=”3.Cellular Energetics” dataset_id=”Unit 3 Cumulative Multiple Choice Quiz Dataset 2|be5fb2c756060″ question_number=”10″ topic=”3.5.Photosynthesis”] The diagram below represents some key cells that are found in plant leaves (A) roots (E), and the stem that connects them (C). The dots in cell “A” are most likely

[c]IFN1Y3Jvc2Ug[Qq][c]IFN0YXJjaCA=[Qq][c]IEdseWNvZ2VuIA==[Qq][c]IEdsdW Nvc2Ug[Qq][c]IGNlbGx1bG9zZQ==

Cg==[Qq]

[f]IE5vLiBTdWNyb3NlIGlzIGEgZGlzYWNjaGFyaWRlLiBUaGUgY2VsbCBhdCBBIGlzIGZpbGxlZCB3aXRoIGNobG9yb3BsYXN0cywgd2hpY2ggYXJlIHBlcmZvcm1pbmcgcGhvdG9zeW50aGVzaXMuIFdoYXQgc3VnYXIgaXMgdGhlIGRpcmVjdCBwcm9kdWN0IG9mIHBob3Rvc3ludGhlc2lzPw==[Qq]

[f]IE5vLiBTdGFyY2ggaXMgYSBwb2x5c2FjY2hhcmlkZSwgYW5kIGl0JiM4MjE3O3MgdXNlZCBmb3IgbG9uZyB0ZXJtIGVuZXJneSBzdG9yYWdlLiBUaGUgY2VsbCBhdCBBIGlzIGZpbGxlZCB3aXRoIGNobG9yb3BsYXN0cywgd2hpY2ggYXJlIHBlcmZvcm1pbmcgcGhvdG9zeW50aGVzaXMuIFdoYXQgc3VnYXIgaXMgdGhlIGRpcmVjdCBwcm9kdWN0IG9mIHBob3Rvc3ludGhlc2lzPw==[Qq]

[f]IE5vLiBUaGUgbWFpbiBwcm9ibGVtIHdpdGggdGhpcyBjaG9pY2UgaXMgdGhhdCBnbHljb2dlbiBpcyBhIHBvbHlzYWNjaGFyaWRlIHRoYXQmIzgyMTc7cyBmb3VuZCBpbiBhbmltYWxzLiBGb3IgZXhhbXBsZSwgd2Ugc3RvcmUgZ2x5Y29nZW4gaW4gb3VyIGxpdmVycyB3aGVuIHdlIHRha2UgaW4gdG9vIG11Y2ggZ2x1Y29zZSBhbmQgbmVlZCB0byBzdG9yZSBpdCBhd2F5LiBUaGUgY2VsbCBhdCBBIGlzIGEgcGxhbnQgY2VsbCB0aGF0JiM4MjE3O3MgZmlsbGVkIHdpdGggY2hsb3JvcGxhc3RzLCB3aGljaCBhcmUgcGVyZm9ybWluZyBwaG90b3N5bnRoZXNpcy4gV2hhdCBzdWdhciBpcyB0aGUgcHJvZHVjdCBvZiBwaG90b3N5bnRoZXNpcz8=[Qq]

[f]IEV4Y2VsbGVudC4gVGhlIGNlbGwgYXQgQSBpcyBhIHBsYW50IGNlbGwgdGhhdCYjODIxNztzIGZpbGxlZCB3aXRoIGNobG9yb3BsYXN0cywgd2hpY2ggYXJlIHBlcmZvcm1pbmcgcGhvdG9zeW50aGVzaXMsIGFuZCBjb252ZXJ0aW5nIGNhcmJvbiBkaW94aWRlIGFuZCB3YXRlciBpbnRvIGdsdWNvc2UgYW5kIG94eWdlbi4=[Qq]

[f]IE5vLiBDZWxsdWxvc2UgaXMgdGhlIHBvbHlzYWNjaGFyaWRlIHRoYXQgbWFrZXMgdXAgcGxhbnQgY2VsbCB3YWxscy4gVGhlIGNlbGwgYXQgQSBpcyBhIHBsYW50IGNlbGwgdGhhdCYjODIxNztzIGZpbGxlZCB3aXRoIGNobG9yb3BsYXN0cywgd2hpY2ggYXJlIHBlcmZvcm1pbmcgcGhvdG9zeW50aGVzaXMuIFdoYXQgc3VnYXIgaXMgdGhlIGRpcmVjdCBwcm9kdWN0IG9mIHBob3Rvc3ludGhlc2lzPw==

Cg==

[Qq]

[q json=”true” xyz=”2″ multiple_choice=”true” unit=”3.Cellular Energetics” dataset_id=”Unit 3 Cumulative Multiple Choice Quiz Dataset 2|be5e3e3fe7860″ question_number=”11″ topic=”3.5.Photosynthesis”] Graph 1 below shows the amount of sunlight received by various levels of a forest on a sunny summer’s day. For example, at noon, the tallest trees receive 100% of full sunlight. By contrast, the bushes receive between about 12% and 50% of full sunlight (depending on their height and position). Note that the light curve experienced by all layers is a triangle, but the triangle is flatter for the lower layers.

Graph 2 shows the plants’ response to light, as shown by their rate of photosynthesis.

Using the average light intensity for their level between about 10 am and 2 pm, what percent of maximum photosynthesis would the tallest trees have? What percent would the bushes have?

[c]IDc1JSBhbmQgOSU=[Qq]

[f]IE5vLiBUaGlzIGlzIG9uZSBvZiB0aG9zZSBxdWVzdGlvbnMgdGhhdCYjODIxNztzIGFsbCBhYm91dCBpbnRlcnByZXRpbmcgZ3JhcGhzLiBTdGFydCBieSBsb29raW5nIGF0IEdyYXBoIDEuIEJldHdlZW4gMTAgYW0gYW5kIDIgcG0sIHRoZSB0YWxsZXN0IHRyZWVzIGFyZSByZWNlaXZpbmcgYXQgbGVhc3QgNzUlIG9mIGZ1bGwgc3VubGlnaHQuIE5vdywgbG9vayBhdCBHcmFwaCAyLiBBdCA3NSUgcGVyY2VudCBvZiBmdWxsIHN1bmxpZ2h0IChpbmRpY2F0ZWQgb24gdGhlIFgtYXhpcyksIHdoYXQgcGVyY2VudGFnZSBvZiBwaG90b3N5bnRoZXNpcyBjYW4gYSBwbGFudCBwZXJmb3JtPyBGb3IgdGhlIGJ1c2hlcywgdGhlIHBlcmNlbnQgb2YgZnVsbCBzdW5saWdodCBtaWdodCBiZSBhcyBsb3cgYXMgMTIlLiBCdXQgbG9vayBhdCBob3cgbXVjaCBwaG90b3N5bnRoZXNpcyBwbGFudHMgY2FuIHBlcmZvcm0gd2l0aCAxMiUgb2YgZnVsbCBzdW5saWdodC4=[Qq]

[c]IDUwJSBhbmQgOSU=[Qq]

[f]IE5vLiBUaGlzIGlzIG9uZSBvZiB0aG9zZSBxdWVzdGlvbnMgdGhhdCYjODIxNztzIGFsbCBhYm91dCBpbnRlcnByZXRpbmcgZ3JhcGhzLiBTdGFydCBieSBsb29raW5nIGF0IEdyYXBoIDEuIEJldHdlZW4gMTAgYW0gYW5kIDIgcG0sIHRoZSB0YWxsZXN0IHRyZWVzIGFyZSByZWNlaXZpbmcgYXQgbGVhc3QgNzUlIG9mIGZ1bGwgc3VubGlnaHQuIE5vdywgbG9vayBhdCBHcmFwaCAyLiBBdCA3NSUgcGVyY2VudCBvZiBmdWxsIHN1bmxpZ2h0IChpbmRpY2F0ZWQgb24gdGhlIFgtYXhpcyksIHdoYXQgcGVyY2VudGFnZSBvZiBwaG90b3N5bnRoZXNpcyBjYW4gYSBwbGFudCBwZXJmb3JtPyBGb3IgdGhlIGJ1c2hlcywgdGhlIHBlcmNlbnQgb2YgZnVsbCBzdW5saWdodCBtaWdodCBiZSBhcyBsb3cgYXMgMTIlLiBCdXQgbG9vayBhdCBob3cgbXVjaCBwaG90b3N5bnRoZXNpcyBhIHBsYW50IGNhbiBwZXJmb3JtIHdpdGggMTIlIG9mIGZ1bGwgc3VubGlnaHQu[Qq]

[c]IDUwJSBhbmQgNSU=[Qq]

[f]IE5vLiBUaGlzIGlzIG9uZSBvZiB0aG9zZSBxdWVzdGlvbnMgdGhhdCYjODIxNztzIGFsbCBhYm91dCBpbnRlcnByZXRpbmcgZ3JhcGhzLiBTdGFydCBieSBsb29raW5nIGF0IEdyYXBoIDEuIEJldHdlZW4gMTAgYW0gYW5kIDIgcG0sIHRoZSB0YWxsZXN0IHRyZWVzIGFyZSByZWNlaXZpbmcgYXQgbGVhc3QgNzUlIG9mIGZ1bGwgc3VubGlnaHQuIE5vdywgbG9vayBhdCBHcmFwaCAyLiBBdCA3NSUgcGVyY2VudCBvZiBmdWxsIHN1bmxpZ2h0IChpbmRpY2F0ZWQgb24gdGhlIFgtYXhpcyksIHdoYXQgcGVyY2VudGFnZSBvZiBwaG90b3N5bnRoZXNpcyBjYW4gYSBwbGFudCBwZXJmb3JtPyBGb3IgdGhlIGJ1c2hlcywgdGhlIHBlcmNlbnQgb2YgZnVsbCBzdW5saWdodCBtaWdodCBiZSBhcyBsb3cgYXMgMTIlLiBCdXQgbG9vayBhdCBob3cgbXVjaCBwaG90b3N5bnRoZXNpcyBhIHBsYW50IGNhbiBkbyB3aXRoIDEyJSBvZiBmdWxsIHN1bmxpZ2h0Lg==[Qq]

[c]IDEwMCUgYW 5kIDYwJQ==[Qq]

[f]IEV4Y2VsbGVudCEgQmV0d2VlbiAxMCBhbmQgMiBwbSwgdGhlIHRhbGxlc3QgdHJlZXMgd2lsbCBiZSBwZXJmb3JtaW5nIDEwMCUgb2YgdGhlIHBob3Rvc3ludGhlc2lzIHRoYXQgdGhleSBjYW4gcGVyZm9ybSwgYW5kIHRoZSBidXNoZXMgd2lsbCBiZSBhdCBhYm91dCA2MCUu

Cg==

[Qq]

[q json=”true” xyz=”2″ multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.5.Photosynthesis” dataset_id=”Unit 3 Cumulative Multiple Choice Quiz Dataset 2|be5cc9b879060″ question_number=”12″] Bacteriorhodopsin is a proton pump found in some photosynthetic archaebacteria that is driven by green light. A scientist plans to isolate the gene for bacteriorhodopsin and splice it into a plant genome so that bacteriorhodopsin inserts in the thylakoid membrane.  What effect would this most likely have on the plant?

[c]IFRoZSBwbGFudCB3b3VsZCBtYWtlIG1vcmUgQVRQIH dpdGggdGhlIHNhbWUgYW1vdW50IG9mIHN1bmxpZ2h0[Qq]

[f]IFllcy4gQXMgaW5kaWNhdGVkIGFib3ZlLCBiYWN0ZXJpb3Job2RvcHNpbiBhYnNvcmJzIGdyZWVuIGxpZ2h0IGFuZCB1c2VzIGl0IHRvIHB1bXAgcHJvdG9ucy4gVGhpcyB3b3VsZCBpbmNyZWFzZSB0aGUgY29uY2VudHJhdGlvbiBvZiBwcm90b25zIHdpdGhpbiB0aGUgdGh5bGFrb2lkIHNwYWNlLCBpbmNyZWFzaW5nIHRoZSBncmFkaWVudCBmb3IgQVRQIHN5bnRoZXNpcyBhcyBwcm90b25zIGZsb3cgZnJvbSB0aGUgdGh5bGFrb2lkIHNwYWNlIGJhY2sgdG8gdGhlIHN0cm9tYS4=[Qq]

[c]IFRoZSBwbGFudCB3b3VsZCBtYWtlIGxlc3MgQVRQIHdpdGggdGhlIHNhbWUgYW1vdW50IG9mIHN1bmxpZ2h0Lg==[Qq]

[f]IE5vLiBBcyBpbmRpY2F0ZWQgYWJvdmUsIGJhY3RlcmlvcmhvZG9wc2luIGFic29yYnMgZ3JlZW4gbGlnaHQgYW5kIHVzZXMgaXQgdG8gcHVtcCBwcm90b25zLiBTdHVkeSB0aGUgZGlhZ3JhbSBiZWxvdywgd2hpY2ggc2hvd3MgYSBzaW5nbGUgdGh5bGFrb2lkLiBJZiB0aGVyZSB3ZXJlIGFuIGFkZGl0aW9uYWwgcHJvdG9uIHB1bXAgaW4gdGhlIHRoeWxha29pZCBtZW1icmFuZSwgd2hhdCB3b3VsZCBiZSB0aGUgZWZmZWN0IG9uIHRoZSBwcm90b24gY29uY2VudHJhdGlvbiBpbiB0aGUgdGh5bGFrb2lkIHNwYWNlPyBIb3cgd291bGQgdGhhdCBhZmZlY3QgQVRQIHByb2R1Y3Rpb24/

Cg==

[Qq]

[c]IFRoZSBwbGFudCB3b3VsZCBiZSB1bmFibGUgdG8gZml4IGNhcmJvbiBkaW94aWRlLg==[Qq]

[f]IE5vLiBUaGlzIHF1ZXN0aW9uIGlzIGFib3V0IHRoZSBsaWdodCByZWFjdGlvbnMsIG5vdCB0aGUgQ2FsdmluIGN5Y2xlLiBIZXJlJiM4MjE3O3MgYSBoaW50LiBBcyBpbmRpY2F0ZWQgYWJvdmUsIGJhY3RlcmlvcmhvZG9wc2luIGFic29yYnMgZ3JlZW4gbGlnaHQgYW5kIHVzZXMgaXQgdG8gcHVtcCBwcm90b25zLiBTdHVkeSB0aGUgZGlhZ3JhbSBiZWxvdywgd2hpY2ggc2hvd3MgYSBzaW5nbGUgdGh5bGFrb2lkLiBJZiB0aGVyZSB3ZXJlIGFuIGFkZGl0aW9uYWwgcHJvdG9uIHB1bXAgaW4gdGhlIHRoeWxha29pZCBtZW1icmFuZSwgd2hhdCB3b3VsZCBiZSB0aGUgZWZmZWN0IG9uIHRoZSBwcm90b24gY29uY2VudHJhdGlvbiBpbiB0aGUgdGh5bGFrb2lkIHNwYWNlPyBIb3cgd291bGQgdGhhdCBhZmZlY3QgQVRQIHByb2R1Y3Rpb24/

Cg==

[Qq]

[c]IFRoZXJlIHdvdWxkIGJlIG5vIGVmZmVjdCBvbiB0aGUgcGxhbnQu[Qq]

[f]IE5vLiBIZXJlJiM4MjE3O3MgYSBoaW50LiBBcyBpbmRpY2F0ZWQgYWJvdmUsIGJhY3RlcmlvcmhvZG9wc2luIGFic29yYnMgZ3JlZW4gbGlnaHQgYW5kIHVzZXMgaXQgdG8gcHVtcCBwcm90b25zLiBTdHVkeSB0aGUgZGlhZ3JhbSBiZWxvdywgd2hpY2ggc2hvd3MgYSBzaW5nbGUgdGh5bGFrb2lkLiBJZiB0aGVyZSB3ZXJlIGFuIGFkZGl0aW9uYWwgcHJvdG9uIHB1bXAgaW4gdGhlIHRoeWxha29pZCBtZW1icmFuZSwgd2hhdCB3b3VsZCBiZSB0aGUgZWZmZWN0IG9uIHRoZSBwcm90b24gY29uY2VudHJhdGlvbiBpbiB0aGUgdGh5bGFrb2lkIHNwYWNlPyBIb3cgd291bGQgdGhhdCBhZmZlY3QgQVRQIHByb2R1Y3Rpb24/

Cg==

[Qq]

 

[q json=”true” xyz=”2″ multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.5.Photosynthesis” dataset_id=”Unit 3 Cumulative Multiple Choice Quiz Dataset 2|be5b2ff04c460″ question_number=”13″] The Calvin Cycle, which makes sugar from carbon dioxide, is an endergonic (or energetically uphill) series of reactions.  It is driven forward in the presence of high concentrations of ATP and NADPH which are produced by the light reactions. Without ATP and NADPH, the Calvin cycle can run backward, causing the plant to lose carbon dioxide.

Rubisco, the enzyme responsible for carbon dioxide entering the Calvin Cycle, is chemically activated only in the presence of light. If a scientist altered Rubisco so that it no longer needed light to be activated, which of the following would most likely occur?

[c]IE1vcmUgY2FyYm9uIHdvdWxkIGJlIGZpeGVkIHBlciBkYXkgYmVjYXVzZSBSdWJpc2NvIHdvdWxkIHdvcmsgaW4gdGhlIGFic2VuY2Ugb2YgbGlnaHQu[Qq]

[f]IE5vLiBUaGUgQVRQIGFuZCBOQURQSCB0aGF0IGRyaXZlIHRoZSBDYWx2aW4gY3ljbGUgYXJlIHByb2R1Y2VkIGJ5IHRoZSBsaWdodCByZWFjdGlvbnMuIEluIHRoZSBhYnNlbmNlIG9mIGxpZ2h0LCBubyBOQURQSCBvciBBVFAgaXMgcHJvZHVjZWQsIGFuZCwgYXMgaW5kaWNhdGVkIGluIHRoZSBzdGVtIG9mIHRoZSBxdWVzdGlvbiwgdGhlIENhbHZpbiBjeWNsZSB3b3VsZCBydW4gYmFja3dhcmQuIFRoZSByZXN1bHQgd291bGQgYmUgdGhlIGxvc3Mgb2YgY2FyYm9uIGRpb3hpZGUsIGFuZCBsZXNzIGNhcmJvbiB3b3VsZCBiZSBmaXhlZCBwZXIgZGF5Lg==[Qq]

[c]IFJ1YmlzY28gd291bGQgcmVsZWFzZSBjYXJib24gZGlveGlkZSBkdXJp bmcgdGhlIG5pZ2h0dGltZSBpbnN0ZWFkIG9mIGFic29yYmluZyBpdC4=[Qq]

[f]IFllcy4gV2l0aG91dCBoaWdoIGNvbmNlbnRyYXRpb25zIG9mIE5BRFBIIGFuZCBBVFAsIHRoZSBDYWx2aW4gY3ljbGUgcnVucyBiYWNrd2FyZCwgd2l0aCBSdWJpc2NvIHJlbGVhc2luZyBDTw==Mg==IGluc3RlYWQgb2YgZml4aW5nIGl0LiBUaGUgYWRhcHRhdGlvbiB0aGF0IHBob3Rvc3ludGhldGljIG9yZ2FuaXNtcyB0aGF0IGZpeCBjYXJib24gZGlveGlkZSB3aXRoIFJ1YmlzY28gaGF2ZSBldm9sdmVkIHRvIHByZXZlbnQgdGhpcyBpcyBmb3IgUnViaXNjbyB0byBiZSBhY3RpdmUgb25seSBpbiB0aGUgcHJlc2VuY2Ugb2YgbGlnaHQu[Qq]

[c]IExlc3MgY2FyYm9uIHdvdWxkIGJlIGZpeGVkIGJlY2F1c2UgUnViaXNjbyB3b3VsZCBub3QgYmUgYWJsZSB0byBhYnNvcmIgbGlnaHQgdG8gZXhjaXRlIGVsZWN0cm9ucy4=[Qq]

[f]IE5vLiBXaGlsZSBpdCYjODIxNztzIHRydWUgdGhhdCBsZXNzIGNhcmJvbiB3b3VsZCBiZSBmaXhlZCwgdGhlIHJlYXNvbiBpcyBpbmNvcnJlY3QuIExpZ2h0IGFic29ycHRpb24gYW5kIGVsZWN0cm9uIGV4Y2l0YXRpb24gYXJlIHBhcnQgb2YgdGhlIGxpZ2h0IHJlYWN0aW9ucywgbm90IHRoZSBDYWx2aW4gY3ljbGUu[Qq]

[c]IFJ1YmlzY28gd291bGQgY29udGludWUgdG8gZml4IGNhcmJvbiBub3JtYWxseS4=[Qq]

[f]IE5vLiBXaXRob3V0IGhpZ2ggY29uY2VudHJhdGlvbnMgb2YgTkFEUEggYW5kIEFUUCwgdGhlIENhbHZpbiBjeWNsZSBydW5zIGJhY2t3YXJkLCB3aXRoIFJ1YmlzY28gcmVsZWFzaW5nIENPMg==IGluc3RlYWQgb2YgZml4aW5nIGl0LiBXaGVuLCBkdXJpbmcgYSBkYXksIHdvdWxkIGNvbmNlbnRyYXRpb25zIG9mIE5BRFBIIGFuZCBBVFAgZHJvcD8=

Cg==

[Qq]

[q json=”true” multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.6.Respiration” dataset_id=”Unit 3 Cumulative Multiple Choice Quiz Dataset 2|be5a05ea5a460″ question_number=”14″] If cultured muscle tissue is kept under anaerobic conditions and provided with 10 moles of glucose, how many moles of ATP will this tissue be able to produce?

[c]IDEyIA==[Qq][c]IDE2IA==[Qq][c]IDIw IA==[Qq][c]IDEwMCA=[Qq][c]IDM2MA==

Cg==[Qq]

[f]IE5vLiBVbmRlciBhbmFlcm9iaWMgY29uZGl0aW9ucywgb25lIHVuaXQgb2YgZ2x1Y29zZSBjYW4gcG93ZXIgdGhlIGNyZWF0aW9uIG9mIHR3byB1bml0cyBvZiBBVFAu[Qq]

[f]IE5vLiBVbmRlciBhbmFlcm9iaWMgY29uZGl0aW9ucywgb25lIHVuaXQgb2YgZ2x1Y29zZSBjYW4gcG93ZXIgdGhlIGNyZWF0aW9uIG9mIHR3byB1bml0cyBvZiBBVFAu[Qq]

[f]IE5pY2UuIFVuZGVyIGFuYWVyb2JpYyBjb25kaXRpb25zLCBjZWxscyBjYW4gcHJvZHVjZSB0d28gdW5pdHMgb2YgQVRQIGZvciBldmVyeSB1bml0IG9mIGdsdWNvc2UuIDEwIGdsdWNvc2UgbW9sZWN1bGVzIGNhbiB0aGVyZWZvcmUgcG93ZXIgdGhlIGNyZWF0aW9uIG9mIDIwIEFUUHMu[Qq]

[f]IE5vLiBVbmRlciBhbmFlcm9iaWMgY29uZGl0aW9ucywgb25lIHVuaXQgb2YgZ2x1Y29zZSBjYW4gcG93ZXIgdGhlIGNyZWF0aW9uIG9mIHR3byB1bml0cyBvZiBBVFAu[Qq]

[f]IE5vLiBVbmRlciBhbmFlcm9iaWMgY29uZGl0aW9ucywgb25lIHVuaXQgb2YgZ2x1Y29zZSBjYW4gcG93ZXIgdGhlIGNyZWF0aW9uIG9mIHR3byB1bml0cyBvZiBBVFAu

Cg==

[Qq]

[q json=”true” multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.6.Respiration” dataset_id=”Unit 3 Cumulative Multiple Choice Quiz Dataset 2|be5846e16f460″ question_number=”15″] Which of the following is true of G3P and pyruvate?

[c]IFB5cnV2YXRlIGhhcyBsZXNzIGNoZW1pY2FsIGVuZXJneSB0aGFuIEczUCBiZWNhdXNlIEczUCBvciBpdHMgYnlwcm9kdWN0cyB3ZXJlIG94aWRpemVkIGluIHN0ZX AgJiM4MjIwO0MmIzgyMjE7IGFuZCB1c2VkIHRvIHBvd2VyIHN1YnN0cmF0ZS1sZXZlbCBwaG9zcGhvcnlsYXRpb25zIGluIHN0ZXAgJiM4MjIwO0QuJiM4MjIxOw==[Qq]

[f]IENvcnJlY3QuIFRoZSBjaGVtaWNhbCBlbmVyZ3kgaW4gRzNQIGlzIHVzZWQgdG8gcG93ZXIgdHdvIGVuZGVyZ29uaWMgcmVhY3Rpb25zOiB0aGUgcmVkdWN0aW9uIG9mIE5BRA==Kw==IHRvIE5BREggYW5kIHRoZSBwaG9zcGhvcnlsYXRpb24gb2YgQURQIGFuZCBQaQ==IHRvIEFUUC4gQXMgYSByZXN1bHQsIHB5cnV2YXRlIGhhcyBsZXNzIGVuZXJneSB0aGFuIEczUC4=[Qq]

[c]IFB5cnV2YXRlIGhhcyBsZXNzIGNoZW1pY2FsIGVuZXJneSB0aGFuIEczUCBiZWNhdXNlIEczUCBvciBpdHMgYnlwcm9kdWN0cyB3ZXJlIHJlZHVjZWQgaW4gc3RlcCAmIzgyMjA7QyYjODIyMTsgYW5kIHVzZWQgdG8gcG93ZXIgc3Vic3RyYXRlLWxldmVsIHBob3NwaG9yeWxhdGlvbnMgaW4gc3RlcCAmIzgyMjA7RC4mIzgyMjE7[Qq]

[f]IE5vLiBOb3RlIHRoYXQgRzNQIG9yIGl0cyBieXByb2R1Y3RzIGFyZSA=b3hpZGl6ZWQ=IGluIHN0ZXAgJiM4MjIwO0MuJiM4MjIxOyBUaGlzIG94aWRhdGlvbiBwb3dlcnMgdGhlIHJlZHVjdGlvbiBvZiBOQUQ=Kw==IHRvIE5BREgu[Qq]

[c]IFB5cnV2YXRlIGhhcyBtb3JlIGNoZW1pY2FsIGVuZXJneSB0aGFuIEczUCBiZWNhdXNlIEczUCBvciBpdHMgYnlwcm9kdWN0cyB3ZXJlIHJlZHVjZWQgaW4gc3RlcCAmIzgyMjA7QyYjODIyMTsgYW5kIHBob3NwaG9yeWxhdGVkIGluIHN0ZXAgJiM4MjIwO0QuJiM4MjIxOw==[Qq]

[f]IE5vLiBHM1Agb3IgaXRzIGJ5cHJvZHVjdHMgYXJlIG5laXRoZXIgcmVkdWNlZCBub3IgcGhvc3Bob3J5bGF0ZWQuIFJhdGhlciwgRzNQIG9yIGl0cyBieXByb2R1Y3RzIGFyZSBveGlkaXplZCwgd2hpY2ggcG93ZXJzIHRoZSByZWR1Y3Rpb24gb2YgTkFEKw==IHRvIE5BREguIEluIGFkZGl0aW9uLCB0aGUgY2hlbWljYWwgZW5lcmd5IGluIEczUCBvciBpdHMgYnlwcm9kdWN0cyBpcyB1c2VkIHRvIHBvd2VyIHRoZSBzdWJzdHJhdGUtbGV2ZWwgcGhvc3Bob3J5bGF0aW9uIG9mIEFEUCBhbmQgUA==aQ==IHRvIEFUUC4gQXMgYSByZXN1bHQsIGhvdyB3b3VsZCB0aGUgY2hlbWljYWwgZW5lcmd5IGluIHB5cnV2YXRlIGNvbXBhcmUgdG8gdGhhdCBvZiBHM1A/[Qq]

[c]IFB5cnV2YXRlIGhhcyBtb3JlIGNoZW1pY2FsIGVuZXJneSB0aGFuIEczUCBiZWNhdXNlIEczUCBvciBpdHMgYnlwcm9kdWN0cyB3ZXJlIG94aWRpemVkIGluIHN0ZXAgJiM4MjIwO0MmIzgyMjE7wqAgYW5kIHVzZWQgdG8gcG93ZXIgc3Vic3RyYXRlLWxldmVsIHBob3NwaG9yeWxhdGlvbnMgaW4gc3RlcCAmIzgyMjA7RC4mIzgyMjE7[Qq]

[f]IE5vLiBIZXJlJiM4MjE3O3MgYSBoaW50IGZvciB0aGUgbmV4dCB0aW1lIHlvdSBzZWUgdGhpcyBxdWVzdGlvbi4gVGhlIGNoZW1pY2FsIGVuZXJneSBpbiBHM1AgaXMgdXNlZCB0byBwb3dlciB0d28gZW5kZXJnb25pYyByZWFjdGlvbnM6IHRoZSByZWR1Y3Rpb24gb2YgTkFEKw==IHRvIE5BREggYW5kIHRoZSBwaG9zcGhvcnlsYXRpb24gb2YgQURQIGFuZCBQaQ==IHRvIEFUUC4gQXMgYSByZXN1bHQsIGhvdyB3b3VsZCB0aGUgY2hlbWljYWwgZW5lcmd5IGluIHB5cnV2YXRlIGNvbXBhcmUgdG8gdGhhdCBvZiBHM1A/

[Qq]

[q json=”true” multiple_choice=”true” unit=”3.Cellular Energetics” topic=”3.6.Respiration” dataset_id=”Unit 3 Cumulative Multiple Choice Quiz Dataset 2|be54a38edb060″ question_number=”16″] As shown below, normal cells, in the presence of oxygen, follow glycolysis with aerobic oxidation of pyruvate. When oxygen is lacking, these same cells can, for short periods of time, use an enzyme called Lactate Dehydrogenase A (LDHA) to follow glycolysis with the fermentation of pyruvate to lactate (lactic acid).

Cancer cells generate most of their ATP through a process called aerobic glycolysis. In aerobic glycolysis, LDHA ferments pyruvate to lactate even in the presence of oxygen.

Which of the following is the most likely explanation for this difference between cancer cells and normal cells?

[c]IEdseWNvbHlzaXMgZ2VuZXJhdGVzIG1vcmUgQVRQIHBlciBtb2xlY3VsZSBvZiBnbHVjb3NlIHRoYW4gb3hpZGF0aXZlIHBob3NwaG9yeWxhdGlvbi4gQmVjYXVzZSBjYW5jZXIgY2VsbHMgYXJlIGdyb3dpbmcgcXVpY2tseSwgdGhleSBjYW4gdXNlIHRoZSBhZGRpdGlvbmFsIEFUUCB0byBzdXBwb3J0IGEgaGlnaGVyIHJhdGUgb2YgZ3Jvd3RoLg==[Qq]

[f]IE5vLiBPeGlkYXRpdmUgcGhvc3Bob3J5bGF0aW9uIGdlbmVyYXRlcw==IG11Y2ggbW9yZQ==IEFUUCB0aGFuIGdseWNvbHlzaXMgYWxvbmUgKH4zOCBBVFAvZ2x1Y29zZSB2LiAyIEFUUC9nbHVjb3NlKS4=[Qq]

[c]IEFjY3VtdWxhdGlvbiBvZiBsYWN0aWMgYWNpZCBhbmQgY2FyYm9uIGRpb3hpZGUgY2F1c2VzIHRoZSBwSCBpbiB0aGUgY3l0b3BsYXNtIG9mIGNhbmNlciBjZWxscyB0byBkcm9wIHRvIGEgbGV2ZWwgd2hlcmUgdGhlIGVuenltZXMgaW52b2x2ZWQgaW4gcmVzcGlyYXRpb24gYXJlIGRlbmF0dXJlZC4=[Qq]

[f]IE5vLCBmb3Igc2V2ZXJhbCByZWFzb25zLiAxKSBBcyBzaG93biBpbiB0aGUgZGlhZ3JhbSwgYWxsIGNlbGxzIGhhdmUgYSBjaGFubmVsICh0aGUgTUNUIGNoYW5uZWwpIHRocm91Z2ggd2hpY2ggbGFjdGF0ZSBjYW4gZGlmZnVzZSBvdXQgb2YgdGhlIGNlbGxzLiAyKSBNdWNoIGxlc3MgY2FyYm9uIGRpb3hpZGUgcHJvZHVjdGlvbiBvY2N1cnMgaW4gY2FuY2VyIGNlbGxzLiAzKSBBcyBhIHNtYWxsLCBub25wb2xhciBtb2xlY3VsZSwgY2FyYm9uIGRpb3hpZGUgY2FuIGVhc2lseSBkaWZmdXNlIGFjcm9zcyB0aGUgY2VsbCBtZW1icmFuZSBhbmQgbGVhdmUgYSBjZWxsLg==[Qq]

[c]IE94eWdlbiBpcyBvZnRlbiBsYWNraW5nIGluIHR1bW9ycywgbWFraW5nIGFlcm9iaWMgcmVzcGlyYXRpb24gZGlmZmljdWx0LiBBbHNvLCBwcm9kdWNpbmcgbGFjdGF0ZSBhbGxvd3 MgY2FuY2VyIGNlbGxzIHRvIHVzZSBsYWN0YXRlIHRvIGJ1aWxkIG90aGVyIGJpb21vbGVjdWxlcywgaW5jcmVhc2luZyB0aGUgZ3Jvd3RoIHJhdGUgb2YgY2FuY2VyIHRpc3N1ZXMu[Qq]

[f]IFllcy4gQWVyb2JpYyBnbHljb2x5c2lzIGludm9sdmVzIGEgdHJhZGUtb2ZmLiBXaGlsZSBpdCBwcm9kdWNlcyBsZXNzIEFUUC9nbHVjb3NlLCBpdCBsZWF2ZXMgYmVoaW5kIG1vcmUgbGFjdGljIGFjaWQgdGhhdCBjYW4gYmUgY29udmVydGVkIGludG8gb3RoZXIgbW9ub21lcnMsIHN1cHBvcnRpbmcgdGhlIGdyb3d0aCBvZiBhZGRpdGlvbmFsIGNlbGxzLg==[Qq]

[c]IEJlY2F1c2UgbW9zdCBtYW1tYWxpYW4gYWR1bHRzIGFyZSBsYWN0b3NlIGludG9sZXJhbnQsIGFjY3VtdWxhdGlvbiBvZiBsYWN0aWMgYWNpZCBjYXVzZXMgbm9ybWFsIGNlbGxzIHRvIG11dGF0ZSBpbnRvIGNhbmNlciBjZWxscy4=[Qq]

[f]IE5vLiBMYWN0b3NlIGludG9sZXJhbmNlIGNhdXNlcyBtYW55IHVucGxlYXNhbnQgc3ltcHRvbXMgKGdhcywgYmxvYXRpbmcsIGFiZG9taW5hbCBjcmFtcHMpIGJ1dCBjYW5jZXIgaXMgbm90IG9uZSBvZiB0aGVtLiBDaG9vc2UgYSByZXNwb25zZSB0aGF0JiM4MjE3O3MgcmVsYXRlZCB0byBjZWxsdWxhciBtZXRhYm9saXNtIChyZXNwaXJhdGlvbiBhbmQgQVRQIHByb2R1Y3Rpb24pLg==

Cg==

[Qq]

[q json=”true” xyz=”2″ multiple_choice=”true” unit=”3.Cellular Energetics” dataset_id=”Unit 3 Cumulative Multiple Choice Quiz Dataset 2|be532f076c860″ question_number=”17″ topic=”3.6.Respiration”] During cellular respiration, this compound is generated by glycolysis, the Krebs cycle, and chemiosmosis.

[c]IENhcmJvaHlkcmF0ZQ==[Qq]

[f]IE5vLiBXaGF0IHlvdSYjODIxNztyZSBsb29raW5nIGZvciBpcyB0aGUgbW9tZW50LXRvLW1vbWVudCBlbmVyZ3kgc291cmNlIG9mIHRoZSBjZWxsLg==[Qq]

[c]IExpcGlk[Qq]

[f]IE5vLiBXaGF0IHlvdSYjODIxNztyZSBsb29raW5nIGZvciBpcyB0aGUgbW9tZW50LXRvLW1vbWVudCBlbmVyZ3kgc291cmNlIG9mIHRoZSBjZWxsLg==[Qq]

[c]IEFU UA==[Qq]

[f]IEV4Y2VsbGVudC4gQVRQIChhZGVub3NpbmUgdHJpcGhvc3BoYXRlKSBpcyB0aGUgY2VsbCYjODIxNztzIG1vbWVudC10by1tb21lbnQgZW5lcmd5IHNvdXJjZSwgYW5kIGl0JiM4MjE3O3MgY3JlYXRlZCBkdXJpbmcgZ2x5Y29seXNpcywgdGhlIEtyZWJzIGN5Y2xlLCBhbmQgdGhyb3VnaCB0aGUgb3hpZGF0aXZlIHBob3NwaG9yeWxhdGlvbiByZWFjdGlvbnMgcG93ZXJlZCBieSBjaGVtaW9zbW9zaXMu[Qq]

[c]IFByb3RlaW4=[Qq]

[f]IE5vLiBXaGF0IHlvdSYjODIxNztyZSBsb29raW5nIGZvciBpcyB0aGUgbW9tZW50LXRvLW1vbWVudCBlbmVyZ3kgc291cmNlIG9mIHRoZSBjZWxsLg==[Qq]

[c]IE51Y2xlaWMgYWNpZA==[Qq]

[f]IE5vLiBXaGF0IHlvdSYjODIxNztyZSBsb29raW5nIGZvciBpcyB0aGUgbW9tZW50LXRvLW1vbWVudCBlbmVyZ3kgc291cmNlIG9mIHRoZSBjZWxsLg==

Cg==

[Qq]

[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 3 Cumulative Multiple Choice Quiz Dataset 2|be516ffe81860″ question_number=”18″ unit=”3.Cellular Energetics” topic=”3.6.Respiration”] In a human cell, where does ATP synthase directly get energy to make ATP?

[c]IFN1bmxpZ2h0[Qq]

[f]IE5vLiBUaGF0IHdvdWxkIGJlIHRydWUgb2YgdGhlIGxpZ2h0IHJlYWN0aW9ucyBvZiBwaG90b3N5bnRoZXNpcywgYnV0IG5vdCBmb3IgY2VsbHVsYXIgcmVzcGlyYXRpb24uIFRha2UgYSBsb29rIGF0IHRoZSBjaG9ydXMgdG8gb25lIG9mIG15IHNvbmdzLCBhbmQgc2VlIGlmIHlvdSBjYW4gZmlndXJlIGl0IG91dC4=

Cg==

VGhlIG1pdG9jaG9uZHJpYWwgZWxlY3Ryb24gdHJhbnNwb3J0IGNoYWluLA==
[Qq] Uses ‘lectron energy for pumping protons,
From the mitochondrial matrix to the intermembrane space.
Increasing proton concentration in that place.
The only way the protons can escape.
Is through a channel and an enzyme ATP synthase.
Which uses diffusing protons’ kinetic energy
To make ATP from ADP and P!

[c]IE94aWRhdGlvbiBvZiBnbHVjb3Nl[Qq]

[f]IE5vLiBUaGUgcXVlc3Rpb24gaXMgYXNraW5nIGFib3V0IHRoZSA=ZGlyZWN0IHNvdXJjZSBvZiBlbmVyZ3kgZm9yIG1ha2luZyBBVFAuIEdsdWNvc2UsIHdoaWNoIHByb3ZpZGVzIHRoZSBjaGVtaWNhbCBlbmVyZ3kgdG8gcG93ZXIgY2VsbHVsYXIgcmVzcGlyYXRpb24sIGlzIHRoZSA=aW5kaXJlY3Q=IHNvdXJjZSBvZiB0aGlzIGVuZXJneS4gVGFrZSBhIGxvb2sgYXQgdGhlIGNob3J1cyB0byBvbmUgb2YgbXkgc29uZ3MsIGFuZCBzZWUgaWYgeW91IGNhbiBmaWd1cmUgaXQgb3V0Lg==

[Qq]

The mitochondrial electron transport chain,
Uses ‘lectron energy for pumping protons,
From the mitochondrial matrix to the intermembrane space.
Increasing proton concentration in that place.
The only way the protons can escape.
Is through a channel and an enzyme ATP synthase.
Which uses diffusing protons’ kinetic energy
To make ATP from ADP and P!

[c]IFJlZHVjdGlvbiBvZiBveHlnZW4=[Qq]

[f]IE5vLiBSZWR1Y3Rpb24gb2Ygb3h5Z2VuIGhhcHBlbnMgd2hlbiBveHlnZW4gYWNjZXB0cyBlbGVjdHJvbnMgYXQgdGhlIGVuZCBvZiB0aGUgbWl0b2Nob25kcmlhbCBlbGVjdHJvbiB0cmFuc3BvcnQgY2hhaW4sIGFuZCB0aGF0IGlzIG5lY2Vzc2FyeSBmb3IgQVRQIGNyZWF0aW9uLCBidXQgaXQmIzgyMTc7cyBub3QgdGhlIGRpcmVjdCBlbmVyZ3kgc291cmNlIHRoYXQmIzgyMTc7cyBwb3dlcmluZyBBVFAgc3ludGhlc2lzLiBUYWtlIGEgbG9vayBhdCB0aGUgY2hvcnVzIHRvIG9uZSBvZiBteSBzb25ncywgYW5kIHNlZSBpZiB5b3UgY2FuIGZpZ3VyZSBpdCBvdXQu

Cg==

VGhlIG1pdG9jaG9uZHJpYWwgZWxlY3Ryb24gdHJhbnNwb3J0IGNoYWluLA==
[Qq] Uses ‘lectron energy for pumping protons,
From the mitochondrial matrix to the intermembrane space.
Increasing proton concentration in that place.
The only way the protons can escape.
Is through a channel and an enzyme ATP synthase.
Which uses diffusing protons’ kinetic energy
To make ATP from ADP and P!

[c]IEZsb3cg b2YgSA==Kw==IGFjcm9zcyB0aGUgaW5uZXIgbWl0b2Nob25kcmlhbCBtZW1icmFuZQ==[Qq]

[f]IEV4Y2VsbGVudC4gSSB0cmllZCB0byBjYXB0dXJlIHRoaXMgaW4gdGhlIGNob3J1cyB0byBteSA=RWxlY3Ryb24gVHJhbnNwb3J0IENoYWluIHNvbmcu
Cg==VGhlIG1pdG9jaG9uZHJpYWwgZWxlY3Ryb24gdHJhbnNwb3J0IGNoYWluLA==[Qq]
Uses ‘lectron energy for pumping protons,
From the mitochondrial matrix to the intermembrane space.
Increasing proton concentration in that place.
The only way the protons can escape.
Is through a channel and an enzyme ATP synthase.
Which uses diffusing protons’ kinetic energy
To make ATP from ADP and P!

[c]IE1vdmVtZW50IG9mIGVsZWN0cm9ucyBhY3Jvc3MgdGhlIGVsZWN0cm9uIHRyYW5zcG9ydCBjaGFpbg==[Qq]

[f]IE5vLiBNb3ZlbWVudCBvZiBlbGVjdHJvbnMgYWxvbmcgdGhlIG1pdG9jaG9uZHJpYWwgZWxlY3Ryb24gdHJhbnNwb3J0IGNoYWluIGlzIGFic29sdXRlbHkgbmVjZXNzYXJ5IGZvciBBVFAgcHJvZHVjdGlvbiwgYnV0IGl0JiM4MjE3O3Mgbm90IHRoZSBkaXJlY3Qgc291cmNlIG9mIGVuZXJneSBmb3IgQVRQIHN5bnRoZXNpcy4gVGFrZSBhIGxvb2sgYXQgdGhlIGNob3J1cyB0byBvbmUgb2YgbXkgc29uZ3MsIGFuZCBzZWUgaWYgeW91IGNhbiBmaWd1cmUgaXQgb3V0Lg==

Cg==

VGhlIG1pdG9jaG9uZHJpYWwgZWxlY3Ryb24gdHJhbnNwb3J0IGNoYWluLA==
[Qq] Uses ‘lectron energy for pumping protons,
From the mitochondrial matrix to the intermembrane space.
Increasing proton concentration in that place.
The only way the protons can escape.
Is through a channel and an enzyme ATP synthase.
Which uses diffusing protons’ kinetic energy
To make ATP from ADP and P!

[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 3 Cumulative Multiple Choice Quiz Dataset 2|be4f66741a060″ question_number=”19″ unit=”3.Cellular Energetics” topic=”3.6.Respiration”] Tigers hunt by concealing themselves, then running and pouncing on their prey. Tigers become exhausted quickly after running short distances. Which of the following statements best explains why tigers tire quickly when running?

[c]IFVubGlrZSBodW50ZXJzIChsaWtlIHdpbGQgZG9ncykgdGhhdCBjYW4gcnVuIGZvciBsb25nIGR1cmF0aW9ucyB3aGlsZSBwdXJzdWluZyB0aGVpciBwcmV5LCB0aWdlcnMgaGF2ZSByZWxhdGl2ZWx5IGxlc3MgQVRQIHN0b3JlZCBpbiB0aGVpciBtdXNjbGUgdGlzc3Vlcy4=[Qq]

[f]IE5vLiBGb3IgYWxsIG9yZ2FuaXNtcywgQVRQIGlzIGEgc2hvcnQtdGVybSBlbmVyZ3kgc3VwcGx5IHRoYXQgbmVlZHMgdG8gYmUgcmVnZW5lcmF0ZWQgZnJvbSBBRFAgYW5kIHBob3NwaGF0ZS4gVGhpcyBxdWVzdGlvbiBpcyByZWFsbHkgYWJvdXQgdGhlIHRpZ2VycyYjODIxNzsgYWJpbGl0eSAob3IgaW5hYmlsaXR5KSB0byBnZW5lcmF0ZSBhIHN1c3RhaW5hYmxlIHN1cHBseSBvZiBBVFAgdG8gZW5hYmxlIHRoZWlyIG11c2NsZXMgdG8ga2VlcCBjb250cmFjdGluZy4gVGhlIG5leHQgdGltZSB5b3Ugc2VlIHRoaXMgcXVlc3Rpb24sIHJlbWVtYmVyIHRoYXQgd2hlbiBjZWxscyBhcmUgcmVzcGlyaW5nIGFlcm9iaWNhbGx5LCB0aGV5IHByb2R1Y2UgYSBsb3Qgb2YgQVRQLCBhbmQgdGhleSBjYW4ga2VlcCBvbiBwcm9kdWNpbmcgdGhhdCBBVFAgZm9yIGEgbG9uZyB0aW1lLg==[Qq]

[c]IFRoZWlyIG11c2NsZXMgc3dpdGNoIHRvIGFlcm9iaWMgcmVzcGlyYXRpb24gYW5kIGdseWNvbHlzaXMgY2Vhc2VzLg==[Qq]

[f]IE5vLiBUaGVyZSBhcmUgdHdvIHByb2JsZW1zIHdpdGggdGhpcyBjaG9pY2UuIEZpcnN0LCBpZiB0aGVpciBtdXNjbGVzIHN3aXRjaGVkIHRvIGFlcm9iaWMgcmVzcGlyYXRpb24sIHRoZW4gdGhleSYjODIxNztkIGJlIGFibGUgdG8gY3JlYXRlIEFUUCBmb3IgYSBwcmFjdGljYWxseSBpbmRlZmluaXRlIGFtb3VudCBvZiB0aW1lIChhcyBvcHBvc2VkIHRvIHF1aWNrbHkgdGlyaW5nIG91dCkuIFRoYXQmIzgyMTc7cyBiZWNhdXNlIGFlcm9iaWMgcmVzcGlyYXRpb24sIGFzIG9wcG9zZWQgdG8gYW5hZXJvYmljIHJlc3BpcmF0aW9uLCBpcyBzdXN0YWluYWJsZSBmb3IgbG9uZyBwZXJpb2RzIG9mIHRpbWUuIFNlY29uZCwgdGhlcmUmIzgyMTc7cyBubyByZWFzb24gd2h5IGFlcm9iaWMgcmVzcGlyYXRpb24gd291bGQgbGVhZCBnbHljb2x5c2lzIHRvIGNlYXNlOiBnbHljb2x5c2lzIHdpbGwgY29udGludWUgYXMgbG9uZyBhcyBjZWxscyBhcmUgcHJvdmlkZWQgd2l0aCBnbHVjb3NlLCBhbmQgdGhhdCB3aWxsIGNvbnRpbnVlIGZvciBhcyBsb25nIGFzIGdsdWNvc2UgY2FuIGJlIGNyZWF0ZWQgZnJvbSBzdG9yZWQgY2FyYm9oeWRyYXRlcyBsaWtlIGdseWNvZ2VuLg==[Qq]

[c]IFRoZXkgZXhlcnQgdGhlbXNlbHZlcyBpbiBhIHdheSB0aGF0IGNhdXNlcy BsYWN0aWMgYWNpZCB0byBidWlsZCB1cCBpbiB0aGVpciBtdXNjbGVzLg==[Qq]

[f]IFRoYXQmIzgyMTc7cyByaWdodC4gVGhlIHRpZ2VycyBhcmUgaHVudGluZyBpbiBhIHdheSB0aGF0IHJlcXVpcmVzIGFuIGFsbC1vdXQgZWZmb3J0LiBFc3NlbnRpYWxseSwgdGhleSYjODIxNztyZSBzcHJpbnRpbmcgdG8gY2FwdHVyZSB0aGVpciBwcmV5LCBhbmQgdGhhdCBsZXZlbCBvZiBhY3Rpdml0eSBxdWlja2x5IG1vdmVzIHRoZW0gaW50byBhbiBhbmFlcm9iaWMgem9uZSwgd2hpY2ggY2FuIG9ubHkgYmUgc3VzdGFpbmVkIGZvciBhIHJlbGF0aXZlbHkgc2hvcnQgYW1vdW50IG9mIHRpbWUuIFRvIGNhcnJ5IG91dCBhbmFlcm9iaWMgbWV0YWJvbGlzbSwgdGhleSYjODIxNztsbCBwZXJmb3JtIGdseWNvbHlzaXMsIGZvbGxvd2VkIGJ5IGFuYWVyb2JpYyBmZXJtZW50YXRpb24gb2YgcHlydXZpYyBhY2lkIChweXJ1dmF0ZSkgdG8gbGFjdGljIGFjaWQgKGxhY3RhdGUpLg==[Qq]

[c]IExhY3RhdGUgaXMgdXNlZCBhcyB0aGUgZmluYWwgZWxlY3Ryb24gYWNjZXB0b3IgaW4gdGhlaXIgbWl0b2Nob25kcmlhLg==[Qq]

[f]IE5vLiBUaGVyZSBhcmUgdHdvIHByb2JsZW1zIHdpdGggdGhpcyByZXNwb25zZS4gRmlyc3QsIG94eWdlbiwgbm90IGxhY3RhdGUsIGlzIHRoZSBmaW5hbCBlbGVjdHJvbiBhY2NlcHRvciBpbiB0aGUgbWl0b2Nob25kcmlhLiBTZWNvbmQsIGxhY3RhdGUgKGxhY3RpYyBhY2lkKSwgd2hpY2ggaXMgcHJvZHVjZWQgd2hlbiBjZWxscyBzd2l0Y2ggdG8gYW5hZXJvYmljIHJlc3BpcmF0aW9uLCBpcyBmb3VuZCBpbiB0aGUgY3l0b3BsYXNtLCBub3QgaW4gdGhlIG1pdG9jaG9uZHJpYS4=[Qq]

[q json=”true” xyz=”2″ multiple_choice=”true” dataset_id=”Unit 3 Cumulative Multiple Choice Quiz Dataset 2|be45117f56460″ question_number=”20″ unit=”3.Cellular Energetics” topic=”3.6.Respiration”] The model below represents the link reaction and the Krebs cycle.

In the model, the letters W, X, Y, and Z represent which molecules?

[c]IGNhcmJvbiBkaW94aWRlLCBhY2V0eWwgQ29BLCBBRFAsIHB5cnV2YXRl[Qq]

[f]IE5vLiBMb29rIGNsb3NlbHkgYXQgdGhlIGRpYWdyYW0gYW5kIGZvbGxvdyB0aGUgYXJyb3dzIGFzIHlvdSBjb25zaWRlciB0aGVzZSBoaW50cy4gMSkgUHlydXZhdGUgaXMgdGhlIGtleSBpbnB1dCBmb3IgdGhlIGxpbmsgcmVhY3Rpb24sIHdoaWNoIHByZWNlZGVzIHRoZSBLcmVicyBjeWNsZS4gMikgQWNldHlsIENvQSBpcyB0aGUga2V5IGlucHV0IGZvciB0aGUgS3JlYnMgY3ljbGUuIE5vdyB5b3UgZmlndXJlIG91dCB0aGUgcmVzdC4=[Qq]

[c]IEFjZXR5bCBDb0EsIHB5cnV2YXRlLCBjYXJib24gZGlveGlkZSwgQURQ[Qq]

[f]IE5vLiBMb29rIGNsb3NlbHkgYXQgdGhlIGRpYWdyYW0gYW5kIGZvbGxvdyB0aGUgYXJyb3dzIGFzIHlvdSBjb25zaWRlciB0aGVzZSBoaW50cy4xKSBQeXJ1dmF0ZSBpcyB0aGUga2V5IGlucHV0IGZvciB0aGUgbGluayByZWFjdGlvbiwgd2hpY2ggcHJlY2VkZXMgdGhlIEtyZWJzIGN5Y2xlLiAyKSBBY2V0eWwgQ29BIGlzIHRoZSBrZXkgaW5wdXQgZm9yIHRoZSBLcmVicyBjeWNsZS4gTm93IHlvdSBmaWd1cmUgb3V0IHRoZSByZXN0Lg==[Qq]

[c]IFB5cnV2YXRlLCBhY2V0eWwgQ29B LCBjYXJib24gZGlveGlkZSwgQURQ[Qq]

[f]IEV4Y2VsbGVudC4gWW91JiM4MjE3O3ZlIGdvdCBhIGdvb2QgdW5kZXJzdGFuZGluZyBvZiB0aGUgbGluayByZWFjdGlvbiBhbmQgdGhlIEtyZWJzIGN5Y2xlIQ==[Qq]

[c]IEFEUCwgY2FyYm9uIGRpb3hpZGUsIGFjZXR5bCBDb0EsIHB5cnV2YXRl[Qq]

[f]IE5vLiBMb29rIGNsb3NlbHkgYXQgdGhlIGRpYWdyYW0gYW5kIGZvbGxvdyB0aGUgYXJyb3dzIGFzIHlvdSBjb25zaWRlciB0aGVzZSBoaW50cy4xKSBQeXJ1dmF0ZSBpcyB0aGUga2V5IGlucHV0IGZvciB0aGUgbGluayByZWFjdGlvbiwgd2hpY2ggcHJlY2VkZXMgdGhlIEtyZWJzIGN5Y2xlLiAyKSBBY2V0eWwgQ29BIGlzIHRoZSBrZXkgaW5wdXQgZm9yIHRoZSBLcmVicyBjeWNsZS4gTm93IHlvdSBmaWd1cmUgb3V0IHRoZSByZXN0Lg==[Qq]

[/qwiz]


4. Unit 3 Cumulative Free Response Quiz

[qwiz style=”min-height: 450px !important; width: 550px !important;” dataset=”Unit 3 Cumulative FRQ Dataset” qrecord_id=”sciencemusicvideosMeister1961-Unit 3 Cumulative FRQs”]

[h]Unit 3 Cumulative Free Response Quiz

[i]

[q json=”true” multiple_choice=”false” unit=”3.Cellular Energetics” topic=”3.1-3.3.Enzyme_Structure_and_Function” dataset_id=”Unit 3 Cumulative FRQ Dataset|ebca6338a8b70″ question_number=”1″] Fluconazole is a medicine that is prescribed for yeast infections. It works by inhibiting a yeast enzyme that helps to synthesize parts of the yeast cell membrane.

Researchers wished to test the effectiveness of fluconazole in inhibiting the yeast species Candida albicans. They grew a lawn of yeast on a petri dish, then soaked a disk in Fluconazole and placed it over the yeast lawn. They saw a zone of inhibition: an area in which yeast was not able to grow.

PART 1: Propose two mechanisms by which Fluconazole could create a zone of inhibition.

PART 2: Identify an appropriate control group for the scientist’s experiment.

[c]IFNob3cgdGhl IGFuc3dlcg==[Qq]

[f]

Cg==

UEFSVCAxOiBBbnkgb2YgdGhlIGZvbGxvd2luZyByZXNwb25zZXMgYXJlIGFjY2VwdGFibGUu

Cg==
    Cg==
  1. [Qq]Fluconazole could act as a competitive inhibitor for molecules that are involved in membrane synthesis.
  2. Fluconazole could act as a non-competitive inhibitor. In this case, it would bind away from the active site. Its binding would cause a change in the active site of an enzyme that’s required for the synthesis of membrane components.
  3. Fluconazole could interact with the enzyme in a way that denatures the enzyme.

In all cases, without a cell membrane, yeast will not be able to grow, and a zone of inhibition is formed.

PART 2: An appropriate control group would be a disk soaked in water and placed over the same Candida albicans strain.

[q json=”true” multiple_choice=”false” unit=”3.Cellular Energetics” topic=”3.1-3.3.Enzyme_Structure_and_Function” dataset_id=”Unit 3 Cumulative FRQ Dataset|ebc8c9707bf70″ question_number=”2″] Pepsin is a stomach enzyme found in humans that breaks down ingested proteins. A team of researchers wished to test the effects of the concentration of four different inhibitors on blocking pepsin activity. Their results are shown below.

PART 1: Identify the relationship between the concentration of the inhibitor and pepsin activity.

PART 2: Inhibitor D is found to not interact with the active site of pepsin. Explain how the inhibitor leads to increased inhibition of pepsin

PART 3: Propose another factor that could potentially inhibit the activity of pepsin.

[c]IFNob3cgdGhl IGFuc3dlcg==[Qq]

[f]

Cg==

UEFSVCAxOiBUaGUgaGlnaGVyIHRoZSBjb25jZW50cmF0aW9uIG9mIHBlcHNpbiBpbmhpYml0b3JzLCB0aGUgZ3JlYXRlciB0aGUgaW5oaWJpdGlvbiwgYW5kIHRoZSBsb3dlciB0aGUgcGVwc2luIGFjdGl2aXR5Lg==

Cg==

UEFSVCAyOiBJbmhpYml0b3IgRCBtdXN0IGJlIGFuIGFsbG9zdGVyaWMgaW5oaWJpdG9yLiBJdCBiaW5kcyB0byBhIHNlcGFyYXRlIHNpdGUgb24gdGhlIGVuenltZSBhbmQgY2hhbmdlcyB0aGUgc2hhcGUgb2YgdGhlIGVuenltZS4=

[Qq]

PART 3: Any of the responses below are correct

  • Temperature
  • pH
  • Concentration of pepsin

[q json=”true” xx=”1″ multiple_choice=”false” unit=”3.Cellular Energetics” dataset_id=”Unit 3 Cumulative FRQ Dataset|ebc605a25d370″ question_number=”4″ topic=”3.1-3.3.Enzyme_Structure_and_Function”] A group of students is doing a lab with an enzyme called catalase, which they extract from chicken liver. Catalase breaks down hydrogen peroxide  (H2O2) into water and oxygen (H2O and O2).

The students set up the following experiment: they set up six test tubes, each with 5 mL of hydrogen peroxide. To each test tube, they add either an acid or a base to set to overall pH to 5, 6, 7, 8, and 9. They add 1 mL of catalase and measure the amount of oxygen produced.

PART 1: Knowing that the pH of liver tissue is about 7 (neutral) DRAW a graph predicting what the results will be.

PART 2: JUSTIFY your prediction. In your response, discuss the relationship between protein structure and factors in the environment.

[c]IFNob3cgdGhl IGFuc3dlcg==[Qq]

[f]IFBBUlQgMQ==OiBUaGUgZ3JhcGggc2hvdWxkIGxvb2sgbGlrZSB3aGF0JiM4MjE3O3Mgc2hvd24gYmVsb3cu

Cg==

[Qq]

PART 2: Catalase is an enzyme. Like almost all enzymes it’s a protein, with a very specific 3-dimensional shape. In enzymes, the shape of the enzyme’s active site is what enables it to bind with its substrate and catalyze the reaction changing the substrate into a product.

As with all proteins, the enzyme’s shape emerges as a result of a constellation of interactions between the amino acids that make up the enzyme. While some of these interactions are strong bonds (such as covalent bonds), others include hydrogen bonds and ionic attractions that are affected by the enzyme’s environment. Since each number on the pH scale represents a 10-fold shift in concentrations of protons or hydroxide ions, a change in pH represents an environmental change that can alter the enzyme’s shape. In the case of this lab, the enzyme’s active site was altered to such a degree at pH 5 and 9 that the catalase couldn’t bind with the hydrogen peroxide, and, as a result, no oxygen was produced. On the other hand, at the enzyme’s pH optimum (7), the most substrate (H2O2) would be converted into the products (H2O and O2), and the most oxygen would be produced.

[q json=”true” xx=”1″ multiple_choice=”false” unit=”3.Cellular Energetics” dataset_id=”Unit 3 Cumulative FRQ Dataset|ebc341d43e770″ question_number=”6″ topic=”3.4.Cellular_Energy”]

PART 1: On the most fundamental level, ATP can only be made through three mechanisms. Briefly describe each one.

PART 2: Connect each mechanism of ATP creation to a location in a eukaryotic cell.

[c]IFNob3cgdGhl IGFuc3dlcg==[Qq]

[f]IFBBUlQgMTogQVRQIGNhbiBiZSBtYWRlIHRocm91Z2ggc3Vic3RyYXRlLWxldmVsIHBob3NwaG9yeWxhdGlvbiwgb3hpZGF0aXZlIHBob3NwaG9yeWxhdGlvbiwgYW5kIHBob3RvcGhvc3Bob3J5bGF0aW9uLiA=

Cg==

SW4g[Qq]substrate-level phosphorylation, an enzyme adds a phosphate group to ADP, creating ATP. 

In oxidative phosphorylation, electrons from food travel along an electron transport chain to oxygen, which acts as the final electron acceptor. Electron flow powers proton pumps that move protons from the mitochondrial matrix to the intermembrane space. This creates a concentration gradient. When protons flow down this gradient through ATP synthase, their kinetic energy powers the formation of ATP from ADP and phosphate.

In photophosphorylation, the mechanism of ATP creation is similar to oxidative phosphorylation: electron flow powers proton pumping to an enclosed space, followed by proton diffusion through ATP synthase to generate ATP. During photophosphorylation, the enclosed space is the thylakoid space, and electron flow is powered by light. 

PART 2: Substrate-level phosphorylation occurs in the cytoplasm. Oxidative phosphorylation occurs in the mitochondria. Photophosphorylation occurs in chloroplasts.

[q json=”true” xx=”1″ multiple_choice=”false” unit=”3.Cellular Energetics” dataset_id=”Unit 3 Cumulative FRQ Dataset|ebc1f28d8e370″ question_number=”7″ topic=”3.5.Photosynthesis”] The graph below shows the relationship between carbon dioxide uptake and light intensity in two plant species, A and B. One of these species is adapted to living in full sun, while the other is adapted to shade.

PART 1: Explain what processes can be measured by measuring carbon dioxide uptake.

PART 2: Using TWO pieces of information from this graph, determine which species is adapted to living in the shade. Justify your answer.

PART 3: Identify the species with the lower rate of respiration. Explain how this can be determined from the graph.

PART 4: Describe the significance that a low rate of respiration could have for this plant in its natural habitat.

[c]IFNob3cgdGhl IGFuc3dlcg==[Qq]

[f]IFBBUlQgMTo=IENPMg==IGlzIGNvbnN1bWVkIGR1cmluZyBwaG90b3N5bnRoZXNpcyAod2hlcmUgaXQmIzgyMTc7cyBhbiBpbnB1dCBmb3IgdGhlIGZvcm1hdGlvbiBvZiBjYXJib2h5ZHJhdGUpLiBDTw==Mg==[Qq] is produced during cellular respiration. CO2 uptake indirectly measures the difference between the rates of photosynthesis and respiration, which also provides a measure of growth.

PART 2: Species B lives in the shade. This is indicated by

  1. It reaches its maximum rate of CO2 uptake at a much lower light intensity than species A,
  2. its CO2 uptake is lower in high light intensities, suggesting it is unable to make efficient use of increased light.

PART 3: Species B has a lower rate of respiration. At a light intensity of zero, the plant is giving out 0.05 dm3/m-2 CO2 through respiration compared to 0.1 dm3/m-2 in species A.

PART 4:The amount by which total photosynthesis exceeds respiration determines the growth rate of a plant. Plant B is adapted to living in shady light conditions. Because of low light intensities in the shade, plant B would have a reduced rate of photosynthesis. A low rate of respiration would result in less glucose being broken down, thus more available for growth.

[q json=”true” xx=”1″ multiple_choice=”false” unit=”3.Cellular Energetics” dataset_id=”Unit 3 Cumulative FRQ Dataset|ebbf097eb1370″ question_number=”9″ topic=”3.5.Photosynthesis”] A student wants to set up a lab that compares overall photosynthetic activity in algae under varying light intensities.

PART 1: List the overall formula for photosynthesis.

PART 2: Describe at least two things that the student could measure.

PART 3: Sketch and explain the relationship between light intensity and these measured quantities.

[c]IFNob3cgdGhl IGFuc3dlcg==[Qq]

[f]IFBBUlQgMTogNkNPMg==wqArIDZIMg==TyArIGxpZ2h0IGVuZXJneSDihpIgQw==[Qq]6H12O6 + 6O2.

PART 2:  A student who wants to measure photosynthetic activity could most easily measure the consumption of the inputs for photosynthesis (carbon dioxide or water) or the production of the outputs (oxygen or carbohydrate). In a high school setting, it is easiest by far to measure the consumption of carbon dioxide or the production of oxygen. 

PART 3: Up to a certain point, as the light intensity increases, the production of the outputs (oxygen and carbohydrate) and the consumption of the inputs (carbon dioxide and water) should increase. At a certain intensity level, the rate of photosynthesis will reach its maximum as the chlorophyll molecules involved in the light reactions become saturated with light and reach their maximum rate of converting light energy into electron flow. 

[q json=”true” xx=”1″ multiple_choice=”false” unit=”3.Cellular Energetics” dataset_id=”Unit 3 Cumulative FRQ Dataset|ebbc206fd4370″ question_number=”11″ topic=”3.6.Respiration”] A respirometer is a device that is used to measure rates of cellular respiration.

In this device, KOH (potassium hydroxide) absorbs the carbon dioxide that is produced during cellular respiration. As oxygen is consumed, the volume of gas in the respirometer decreases, and rates of oxygen consumption can be measured as a small quantity of food coloring moves down a pipette.

Scientists are using an enlarged version of this device to compare the respiration rates of lizards and mice in cold and warm environments. They control for the body mass of each type of organism so that they can compare the rate of respiration for each kilogram of animal tissue.

PART 1: Compare and contrast rates of respiration in mice in cold (about 4° C) and warm (about 30° C) temperatures. Explain why the rates of respiration differ at these two temperatures.

PART 2: Compare and contrast rates of respiration in lizards in cold (about 4° C) and warm (about 30° C) temperatures. Explain why the rates of respiration are different at these two temperatures.

PART 3:  Choose which organism (the mouse or the lizard) is metabolically more similar to peas than the other one. Justify your answer.

[c]IFNob3cgdGhl IGFuc3dlcg==[Qq]

[f]IFBBUlQgMTogTWljZSwgbGlrZSBhbGwgbWFtbWFscyBhbmQgYmlyZHMsIGFyZSBlbmRvdGhlcm1pYzogdGhleSBnZW5lcmF0ZSB0aGVpciBib2R5IGhlYXQgaW50ZXJuYWxseS4gTWljZSwgbGlrZSB1cywgYXJlIGFsc28gaG9tZW90aGVybWljOiB0aGV5IHJlZ3VsYXRlIHRoZWlyIGJvZHkgdGVtcGVyYXR1cmUgYXJvdW5kIGEgbmFycm93IHJhbmdlICh2ZXJ5IGNsb3NlIHRvIDM3Q8KwKS4gQSBtb3VzZSBpbiBhIHdhcm0gZW52aXJvbm1lbnQgd29uJiM4MjE3O3QgaGF2ZSB0byB1c2UgYSBsb3Qgb2YgZW5lcmd5IHRvIG1haW50YWluIGl0cyBib2R5IHRlbXBlcmF0dXJlLiBBIG1vdXNlIGluIGEgY29sZCBlbnZpcm9ubWVudCwgYnkgY29udHJhc3QsIHdpbGwgdXNlIGEgbG90IG9mIGVuZXJneSB0byBtYWludGFpbiBpdHMgdGVtcGVyYXR1cmUuIEFzIGEgcmVzdWx0LCB0aGUgbWljZSBpbiB0aGUgY29sZCBlbnZpcm9ubWVudCBjb25zdW1lIG1vcmUgb3h5Z2VuIHRoYW4gdGhlIG1pY2UgaW4gdGhlIHdhcm0gZW52aXJvbm1lbnQu

Cg==

UEFSVCAyOiBUaGUgbGl6YXJkIGlzIGVjdG90aGVybWljLiBJbiBhIGNvbGQgZW52aXJvbm1lbnQsIGEgbGl6YXJkJiM4MjE3O3MgYm9keSB0ZW1wZXJhdHVyZSB3aWxsIGNvbmZvcm0gdG8gaXRzIGNvbGQgZW52aXJvbm1lbnQuIFRoaXMgd2lsbCBzbG93IHRoZSByYXRlIG9mIGFsbCB0aGUgbWV0YWJvbGljIHByb2Nlc3NlcyB3aXRoaW4gaXRzIGJvZHksIGluY2x1ZGluZyBjZWxsdWxhciByZXNwaXJhdGlvbiwgd2hpY2ggd2lsbCBmYWxsIHRvIGEgdmVyeSBsb3cgbGV2ZWwuIEF0IHdhcm1lciB0ZW1wZXJhdHVyZXMsIHRoZSByYXRlIG9mIGFsbCBtZXRhYm9saWMgcHJvY2Vzc2VzIHdpdGhpbiB0aGUgbGl6YXJkIHdpbGwgaW5jcmVhc2UuIFRoaXMgd2lsbCBpbmNyZWFzZSB0aGUgcmF0ZSBvZiBjZWxsdWxhciByZXNwaXJhdGlvbiwgd2hpY2ggd2lsbCBvY2N1ciBhdCBhIG11Y2ggaGlnaGVyIGxldmVsIGluIHdhcm0gdGVtcGVyYXR1cmVzIHRoYW4gaW4gY29sZCB0ZW1wZXJhdHVyZXMu

Cg==

UEFSVCAzOiBUaGUgbGl6YXJkcywgd2hpY2ggYXJlIGVjdG90aGVybWljLCBhcmUgbWV0YWJvbGljYWxseSBtb3JlIHNpbWlsYXIgdG8gcmVzcGlyaW5nIHNlZWRzLCB3aGljaCBhbHNvIGNvbmZvcm0gdG8gdGhlIHRlbXBlcmF0dXJlIGluIHRoZSBlbnZpcm9ubWVudCwgYW5kIGFsc28gcmVzcGlyZSBsZXNzIHdoZW4gY29sZCB0aGFuIHRoZXkgZG8gd2hlbiB3YXJtLg==[Qq]

[q json=”true” xx=”1″ multiple_choice=”false” unit=”3.Cellular Energetics” dataset_id=”Unit 3 Cumulative FRQ Dataset|ebba16e56cb70″ question_number=”12″ topic=”3.5.Photosynthesis”] A group of students is given 20 radish seeds.  The students divide the seeds into two groups. Each group is massed, regularly watered, and kept in the same conditions, except for one difference: one group is kept in the dark, while the second is kept in the light.

After three weeks, the seedlings have sprouted. The young plants are placed in a food dryer which removes all of their water, and the plants are massed again

PART 1: Predict what happens to the dry mass of the group in the light and the group in the dark.

PART 2: Explain the difference between the two groups.

[c]IFNob3cgdGhl IGFuc3dlcg==[Qq]

[f]IFBBUlQgMTogVGhlIHBsYW50cyBpbiB0aGUgZGFyayBsb3N0IG1hc3MgZnJvbSB0aGUgaW5pdGlhbCBtYXNzIG9mIHRoZSBzZWVkcy4gVGhlIHBsYW50cyBpbiB0aGUgbGlnaHQgZ2FpbmVkIG1hc3MgZnJvbSB0aGUgaW5pdGlhbCBtYXNzIG9mIHRoZSBzZWVkcyAoYW5kIGhhZCBhIGdyZWF0ZXIgbWFzcyB0aGFuIHRoZSBwbGFudHMga2VwdCBpbiB0aGUgZGFyayku

Cg==

UEFSVCAyOiBJbiB0aGUgc2VlZHMga2VwdCBpbiB0aGUgZGFyaywgdGhlIG9ubHkgcHJvY2VzcyB0aGF0IHdhcyBvY2N1cnJpbmcgd2FzIGNlbGx1bGFyIHJlc3BpcmF0aW9uLiBVc2luZyB0aGUgc2VlZHMmIzgyMTc7IHN0b3JlZCBlbmVyZ3kgcmVzZXJ2ZXMgKHN1Y2ggYXMgc3RhcmNoIGFuZCBwbGFudCBvaWxzKSwgdGhlIHNlZWRzIGdlcm1pbmF0ZWQgYW5kIGdyZXcsIGNvbnZlcnRpbmcgdGhlIG1vbGVjdWxlcyBpbiB0aGUgc2VlZCBpbnRvIG1vbGVjdWxlcyB0aGF0IGJlY2FtZSByb290cywgc3RlbXMsIGFuZCBsZWF2ZXMuIEJ1dCBhbGwgdGhlIHdoaWxlLCB0aGUgc2VlZGxpbmdzIHdlcmUgbG9zaW5nIGNhcmJvbiBhbmQgb3h5Z2VuICh0aG91Z2ggdGhleSBtYXkgaGF2ZSBiZWVuIGdhaW5pbmcgd2F0ZXIpLiBXaGVuIHRoZSB3YXRlciB3YXMgcmVtb3ZlZCBmcm9tIHRoZXNlIHBsYW50cyBieSBwbGFjaW5nIHRoZW0gaW4gdGhlIGZvb2QgZHJ5ZXIgYXQgdGhlIGVuZCBvZiB0aGUgZXhwZXJpbWVudCwgdGhlIHNlZWRsaW5ncyB3b3VsZCBoYXZlIHNob3duIGEgZGVjcmVhc2UgaW4gbWFzcywgcmVmbGVjdGluZyB0aGUgY2FyYm9uIGFuZCBveHlnZW4gdGhhdCBsZWZ0IHRoZWlyIGJvZGllcyBhbmQgd2VudCBpbnRvIHRoZSBhaXIgZHVyaW5nIGNlbGx1bGFyIHJlc3BpcmF0aW9uLg==

Cg==

VGhlIHNlZWRzIGluIHRoZSBsaWdodCBzdGFydGVkIG91dCB0aGVpciBsaXZlcyBieSBzaW1pbGFybHkgZG9pbmcgcmVzcGlyYXRpb24sIGJ1dCBhcyBzb29uIGFzIHRoZXNlIHBsYW50cyBkZXZlbG9wZWQgbGVhdmVzLCB0aG9zZSBsZWF2ZXMgYmVnYW4gdG8gcGVyZm9ybSBwaG90b3N5bnRoZXNpcy4gVGhyb3VnaCBwaG90b3N5bnRoZXNpcywgdGhlIHBsYW50cyBwZXJmb3JtZWQgY2FyYm9uIGZpeGF0aW9uLCBwdWxsaW5nIGNhcmJvbiBkaW94aWRlIG1vbGVjdWxlcyBmcm9tIHRoZSBhaXIsIGFuZCBjaGVtaWNhbGx5IHJlZHVjaW5nIHRoZW0gdG8gZm9ybSBzdWdhcnMuIFRoZXNlIHN1Z2FycyBwcm92aWRlZCB0aGUgZW5lcmd5IHRvIGdyb3cgYWRkaXRpb25hbCBsZWF2ZXMsIHJvb3RzLCBhbmQgc3RlbXMsIGFzIHdlbGwgYXMgdGhlIGNhcmJvbiBhbmQgb3h5Z2VuIGF0b21zIHRoYXQgY2FtZSB0byBtYWtlIHVwIHRoZXNlIHN0cnVjdHVyZXMuIFdoZW4gdGhlc2UgeW91bmcgcGxhbnRzIGhhZCB0aGVpciB3YXRlciByZW1vdmVkIGF0IHRoZSBlbmQgb2YgdGhlIGV4cGVyaW1lbnQsIHRoZXkgd291bGQgaGF2ZSBzaG93biBhIGdhaW4gaW4gbWFzcywgcmVmbGVjdGluZyB0aGUgZml4ZWQgY2FyYm9uIGFuZCBveHlnZW4gdGhhdCBvY2N1cnJlZCB0aHJvdWdoIHBob3Rvc3ludGhlc2lzLg==[Qq]

[q json=”true” xx=”1″ multiple_choice=”false” unit=”3.Cellular Energetics” dataset_id=”Unit 3 Cumulative FRQ Dataset|ebb6e35513370″ question_number=”13″ topic=”3.6.Respiration”] The diagram below shows the production of lactic acid during one minute of exercise on a treadmill.

From points B to C the test subject was jogging at a sustainable pace. From C to D the test subject was asked to run on the treadmill at their highest speed.

PART 1: Name the type of respiration the subject was performing from points B and C, and describe how the subject was producing ATP between these two points of time.

PART 2: Explain why the test subject’s blood lactic acid level rose between points C and D.

PART 3: Describe how ATP was produced between points C and D.

[c]IFNob3cgdGhl IGFuc3dlcg==[Qq]

[f]IFBBUlQgMS4gQmV0d2VlbiBwb2ludHMgQiBhbmQgQyB0aGUgc3ViamVjdCB3YXMgcGVyZm9ybWluZyBwZXJmb3JtIGFlcm9iaWMgcmVzcGlyYXRpb24uIFRoZSBzdWJqZWN0IHdhcyBwcm9kdWNpbmcgYSBzbWFsbCBhbW91bnQgb2YgQVRQIHRocm91Z2ggc3Vic3RyYXRlLWxldmVsIHBob3NwaG9yeWxhdGlvbnMgdGhhdCB3ZXJlIG9jY3VycmluZyBkdXJpbmcgZ2x5Y29seXNpcyBhbmQgdGhlIEtyZWJzIGN5Y2xlLiBNdWNoIG1vcmUgQVRQIHdhcyBwcm9kdWNlZCB0aHJvdWdoIG94aWRhdGl2ZSBwaG9zcGhvcnlsYXRpb24gYXMgdGhlIE5BREggYW5kIEZBREg=Mg==IHByb2R1Y2VkIGR1cmluZyBHbHljb2x5c2lzLCB0aGUgTGluayBSZWFjdGlvbiwgYW5kIHRoZSBLcmVicyBDeWNsZSB3ZXJlIHVzZWQgdG8gcG93ZXIgdGhlIGVsZWN0cm9uIHRyYW5zcG9ydCBjaGFpbiBhbmQgY2hlbWlvc21vc2lzLg==

Cg==

UEFSVCAyOiBCZXR3ZWVuIHBvaW50cyBDIGFuZCBELCB0aGUgdGVzdCBzdWJqZWN0IHdhcyB1bmFibGUgdG8gc3VwcGx5IHRoZWlyIG11c2NsZXMgd2l0aCBzdWZmaWNpZW50IG94eWdlbiB0byBzdXN0YWluIGFlcm9iaWMgcmVzcGlyYXRpb24uIEFzIGEgcmVzdWx0LCB0aGVpciBtdXNjbGUgY2VsbHMgc3dpdGNoZWQgZnJvbSBhZXJvYmljIHRvIGFuYWVyb2JpYyByZXNwaXJhdGlvbi7CoCBJbiBhbmltYWxzLCBhbmFlcm9iaWMgcmVzcGlyYXRpb24gY29uc2lzdHMgb2YgZ2x5Y29seXNpcywgZm9sbG93ZWQgYnkgbGFjdGljIGFjaWQgZmVybWVudGF0aW9uLiBBcyBhIHJlc3VsdCwgdGhlIGxhY3RpYyBhY2lkIGxldmVsIHJvc2Uu

[Qq]

PART 3: During glycolysis, a glucose molecule gets broken down into two molecules of pyruvic acid (pyruvate), with a net yield of two NADHs and two ATPs. In order for glycolysis to continue, the cell needs to regenerate NAD+ (a substrate for one of the enzymes in the glycolysis pathway). To regenerate the NAD+ that’s required for glycolysis, cells chemically reduce pyruvate to lactic acid, while simultaneously oxidizing the NADH produced in glycolysis back to NAD+.

[q json=”true” xx=”1″ multiple_choice=”false” unit=”3.Cellular Energetics” dataset_id=”Unit 3 Cumulative FRQ Dataset|ebb00c7225770″ question_number=”15″ topic=”3.6.Respiration”] The diagram below represents a portion of the electron transport system in the inner mitochondrial membrane. As is shown, this pathway transfers electrons from NADH (and FADH2) to O2. Energy from this reaction is coupled to the pumping of H+.

Normally, cells carrying out respiration consume O2, produce CO2, and produce 36 ATP for each glucose consumed.

As is shown in the diagram, two drugs, drug X and drug Y, can pick up electrons from particular intermediates in this pathway.

PART 1: Cells carrying out respiration are treated with a saturating dose of drug X so that all the electrons which would normally continue along the pathway are captured by drug X. Under these conditions, PREDICT whether:

  • The cells will continue to consume O2.
  • The cells will continue to produce CO2.
  • The rate of ATP synthesis will increase, decrease or stay the same.

For each prediction, EXPLAIN your reasoning.

PART 2: Cells carrying out respiration are treated with a saturating dose of drug Y so that all the electrons which would normally continue along the pathway are captured by drug Y. Under these conditions, PREDICT whether:

  • The cells will continue to consume O2.
  • The cells will continue to produce CO2.
  • The rate of ATP synthesis will increase, decrease or stay the same.

For each prediction, EXPLAIN your reasoning.

[c]IFNob3cgdGhl IGFuc3dlcg==[Qq]

[f]IA==IFBBUlQgMTogV2l0aCBkcnVnIFgsIHRoZSBjZWxscyB3b24mIzgyMTc7dCBjb25zdW1lIE8=Mg==LiBUaGV5IHdpbGwgcHJvZHVjZSBDTw==Mg==[Qq]. ATP production will decrease. That’s because the effect of drug X is to intercept energetic electrons from NADH and FADH2. That keeps these electrons from powering the electron flow that powers the proton pumps that create the proton gradient that powers ATP synthesis through ATP synthase. With no electron flow, there will be no consumption of oxygen, because oxygen is the final electron acceptor of the mitochondrial electron transport chain. However, CO2 will continue to be produced by the link reaction and the Krebs cycle, and a small amount of ATP will continue to be produced by Glycolysis and the Krebs cycle.
PART 2: With drug Y, the cells won’t consume O2. They will produce CO2. ATP production will stay the same because protons are still being pumped. The difference between drug X and drug Y is that Y is intercepting electrons at the very end of the electron transport chain, and essentially substituting for oxygen as the final electron acceptor. While this stops oxygen consumption, it still allows for ATP production through chemiosmosis, and it still (as with drug X) allows for CO2 production during the link reaction and the Krebs cycle.

[q json=”true” xx=”1″ multiple_choice=”false” unit=”3.Cellular Energetics” dataset_id=”Unit 3 Cumulative FRQ Dataset|eba1c9a950f70″ question_number=”16″ topic=”3.6.Respiration”] Aquaporins (one of which is shown below) are membrane channels that allow water molecules to enter into cells. While aquaporins increase the permeability of cell membranes to water, they are impermeable to protons.

 

PART 1: As specifically as possible, IDENTIFY the structure at T. Predict the chemical nature of the R-groups/side chains at T, and justify your response.

PART 2: With reference to the figure, EXPLAIN why aquaporins are not permeable to protons.

PART 3: DESCRIBE a biological process that depends on a cell’s preventing the free passage of protons through the cell membrane, and briefly explain how that process works.

[c]IFNob3cgdGhl IGFuc3dlcg==[Qq]

[f]IA==UEFSVCAxOiA=VCBpcyBhbiBhbHBoYSBoZWxpeCwgYSBzZWNvbmRhcnkgc3RydWN0dXJlIG9mIHByb3RlaW5zLiBUaGUgUi1ncm91cHMgaW4gdGhlIGFtaW5vIGFjaWRzIG1ha2luZyB1cCB0aGUgYWxwaGEgaGVsaWNlcyBhdCBUIHdvdWxkIG1vc3QgbGlrZWx5IGJlIGh5ZHJvcGhvYmljL25vbi1wb2xhciwgYXMgdGhhdCB3b3VsZCBlbmFibGUgdGhlbSB0byBpbnRlZ3JhdGUgaW50byB0aGUgZmF0dHkgYWNpZCB0YWlscyBvZiB0aGUgcGhvc3Bob2xpcGlkcyB0aGF0IG1ha2UgdXAgdGhlIGludGVyaW9yIG9mIHRoZSBtZW1icmFuZS7CoA==

Cg==

[Qq]PART 2: The + signs indicate areas of positive charge, associated with amino acids with positively charged R groups at that position in the structure. Because like charges repel, positively charged protons will be repelled by these positively charged regions, and therefore won’t be able to pass through the aquaporin.

PART 3: Oxidative phosphorylation in mitochondria and photophosphorylation in chloroplasts are based on protons becoming trapped in a membrane-enclosed compartment (the intermembrane space in mitochondria, and the thylakoid space in chloroplasts). This trapping of protons forces them to diffuse through the ATP synthase channel, providing the kinetic energy to drive ATP synthase to be able to create ATP from ADP and inorganic phosphate. (Note: other responses might be possible)

[/qwiz]


5. Quiz: Comparing Photosynthesis and Cellular Respiration

Note that to make a point, the diagram that this quiz is based upon takes one liberty: what goes into a mitochondrion (“g”) is pyruvic acid, not glucose (or another simple sugar, indicated by “e”).

[qwiz random=”true” quiz_timer=”true” style=”min-height: 450px !important; width: 550px !important;” qrecord_id=”sciencemusicvideosMeister1961-Comparing Respiration and PSN (2.0)”]

[h] Comparing Photosynthesis and Respiration

[i] If it suits your learning style, use the timer on the top right as a way to improve your accuracy and speed in the questions that follow.

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|1716a276dfbb56″ question_number=”1″] In the diagram below, carbon dioxide is indicated by

[textentry single_char=”true”]

[c]IG w=[Qq]

[f]IFllcy4gTGV0dGVyIOKAnGzigJ0gaW5kaWNhdGVzIGNhcmJvbiBkaW94aWRlLg==[Qq]

[c]ICo=[Qq]

[f]IE5vLiBIZXJlJiM4MjE3O3MgYSBoaW50LiBDYXJib24gZGlveGlkZSBpcyBhIGdhcyB0aGF0JiM4MjE3O3MgcmVsZWFzZWQgYnkgbWl0b2Nob25kcmlhIGFzIGEgd2FzdGUgcHJvZHVjdCBhbmQgdGFrZW4gaW50byBjaGxvcm9wbGFzdHMgYXMgYW4gaW5wdXQu

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|171665edaa9356″ question_number=”2″] In the diagram below, oxygen is indicated by letter

[textentry single_char=”true”]

[c]IG Y=[Qq]

[f]IFllcy4gTGV0dGVyIOKAnGbigJ0gaW5kaWNhdGVzIG94eWdlbiwgYSB3YXN0ZSBwcm9kdWN0IG9mIHBob3Rvc3ludGhlc2lzLCBhbmQgaW5wdXQgZm9yIGNlbGx1bGFyIHJlc3BpcmF0aW9uLg==[Qq]

[c]ICo=[Qq]

[f]IE5vLiBIZXJlJiM4MjE3O3MgYSBoaW50LiBGaW5kIGEgZ2FzIHRoYXQmIzgyMTc7cyBjb21pbmcgb3V0IG9mIGEgY2hsb3JvcGxhc3QgKCYjODIyMDthJiM4MjIxOyksIGFuZCBnb2luZyBpbnRvIGEgbWl0b2Nob25kcmlvbiAoJiM4MjIwO2cmIzgyMjE7KQ==

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|17162bb8814f56″ question_number=”3″] In the diagram below, protons are pumped to which region of a chloroplast?

[textentry single_char=”true”]

[c]IG Q=[Qq]

[f]IFllcy4gTGV0dGVyIOKAnGTigJ0gaW5kaWNhdGVzIHRoZSB0aHlsYWtvaWQgc3BhY2UsIHdoaWNoIGlzIHdoZXJlIHByb3RvbnMgYXJlIHB1bXBlZCB0byBpbiBhIGNobG9yb3BsYXN0Lg==[Qq]

[c]ICo=[Qq]

[f]IE5vLiBIZXJlJiM4MjE3O3MgYSBoaW50LiBGb3IgQVRQIHN5bnRoZXNpcyB0byBvY2N1ciwgcHJvdG9ucyBoYXZlIHRvIGJlIHB1bXBlZCBpbnRvIGEgc21hbGwgZW5jbG9zZWQgc3BhY2UuIEZpbmQgYSBzcGFjZSBsaWtlIHRoYXQgaW4gdGhlIGNobG9yb3BsYXN0ICgmIzgyMjA7YSYjODIyMTspLg==

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|1715f3d763ef56″ question_number=”4″] In the diagram below, protons are pumped to which region of a mitochondrion?

[textentry single_char=”true”]

[c]IG g=[Qq]

[f]IFllcy4gTGV0dGVyIOKAnGjigJ0gaW5kaWNhdGVzIHRoZSBpbnRlcm1lbWJyYW5lIHNwYWNlLCB3aGljaCBpcyB3aGVyZSBwcm90b25zIGFyZSBwdW1wZWQgdG8gaW4gYSBtaXRvY2hvbmRyaW9uLg==[Qq]

[c]ICo=[Qq]

[f]IE5vLiBIZXJlJiM4MjE3O3MgYSBoaW50LiBGb3IgQVRQIHN5bnRoZXNpcyB0byBvY2N1ciwgcHJvdG9ucyBoYXZlIHRvIGJlIHB1bXBlZCBpbnRvIGEgc21hbGwgZW5jbG9zZWQgc3BhY2UuIEZpbmQgYSBzcGFjZSBsaWtlIHRoYXQgaW4gdGhlIG1pdG9jaG9uZHJpb24gKCYjODIyMDtnJiM4MjIxOyku

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|1715b74e2ec756″ question_number=”5″] In the diagram below, the electron transport chain in a mitochondrion would be found on

[textentry single_char=”true”]

[c]IG k=[Qq]

[f]IFllcy4gVGhlIGxldHRlciDigJxp4oCdIGluZGljYXRlcyB0aGUgaW5uZXIgbWl0b2Nob25kcmlhbCBtZW1icmFuZSwgd2hpY2ggaXMgd2hlcmUgdGhlIGVsZWN0cm9uIHRyYW5zcG9ydCBjaGFpbiBpcyBsb2NhdGVkLg==[Qq]

[c]ICo=[Qq]

[f]IE5vLiBIZXJlJiM4MjE3O3MgYSBoaW50LiBUaGUgZWxlY3Ryb24gdHJhbnNwb3J0IGNoYWluIGhhcyB0byBiZSBsb2NhdGVkIG9uIGEgbWVtYnJhbmUsIGFuZCBpdCBoYXMgdG8gYmUgbG9jYXRlZCBuZXh0IHRvIGFuIGVuY2xvc2VkIHNwYWNlICh3aGVyZSBwcm90b25zIGNhbiBiZSBwdW1wZWQgdG8pLiBJbiBhIG1pdG9jaG9uZHJpb24sIHdoYXQgbGV0dGVyIGNvdWxkIGluZGljYXRlIGEgcGFydCB0aGF0IGZpdHMgdGhvc2UgcmVxdWlyZW1lbnRzPw==

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|17157f6d116756″ question_number=”6″] In the diagram below, the electron transport chain in a chloroplast would be found on

[textentry single_char=”true”]

[c]IG M=[Qq]

[f]IFllcy4gTGV0dGVyIOKAnGPigJ0gaW5kaWNhdGVzIHRoZSB0aHlsYWtvaWQgbWVtYnJhbmUsIHdoaWNoIGlzIHdoZXJlIHRoZSBlbGVjdHJvbiB0cmFuc3BvcnQgY2hhaW4gaXMgbG9jYXRlZCBpbiBhIGNobG9yb3BsYXN0Lg==[Qq]

[c]ICo=[Qq]

[f]IE5vLiBIZXJlJiM4MjE3O3MgYSBoaW50LiBUaGUgZWxlY3Ryb24gdHJhbnNwb3J0IGNoYWluIGhhcyB0byBiZSBsb2NhdGVkIG9uIGEgbWVtYnJhbmUsIGFuZCBpdCBoYXMgdG8gYmUgbG9jYXRlZCBuZXh0IHRvIGFuIGVuY2xvc2VkIHNwYWNlICh3aGVyZSBwcm90b25zIGNhbiBiZSBwdW1wZWQgdG8pLiBJbiBhIGNobG9yb3BsYXN0LCB3aGF0IGxldHRlciB3b3VsZCBpbmRpY2F0ZSBhIHBhcnQgdGhhdCBmaXRzIHRob3NlIHJlcXVpcmVtZW50cz8=

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|17152b9b655756″ question_number=”7″] In the diagram below, the Calvin cycle would occur at

[textentry single_char=”true”]

[c]IG I=[Qq]

[f]IFllcy4gTGV0dGVyIOKAnGLigJ0gaW5kaWNhdGVzIHRoZSBzdHJvbWEsIHdoaWNoIGlzIHdoZXJlIHRoZSBDYWx2aW4gY3ljbGUgb2NjdXJzLg==[Qq]

[c]ICo=[Qq]

[f]IE5vLiBIZXJlJiM4MjE3O3MgYSBoaW50LiBUaGUgQ2FsdmluIGN5Y2xlIG9jY3VycyBpbiBhIGNobG9yb3BsYXN0LCBvdXRzaWRlIG9mIHRoZSB0aHlsYWtvaWRzLg==

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|1714e5c2009f56″ question_number=”8″] In the diagram below, the Krebs cycle would occur at

[textentry single_char=”true”]

[c]IG o=[Qq]

[f]IFllcy4gTGV0dGVyIOKAnGrigJ0gaW5kaWNhdGVzIHRoZSBtYXRyaXgsIHdoaWNoIGlzIHdoZXJlIHRoZSBLcmVicyBjeWNsZSBvY2N1cnMu[Qq]

[c]ICo=[Qq]

[f]IE5vLiBIZXJlJiM4MjE3O3MgYSBoaW50LiBUaGUgS3JlYnMgY3ljbGUgb2NjdXJzIGluIGEgbWl0b2Nob25kcmlvbiwgaW4gdGhlIGZsdWlkIHRoYXQmIzgyMTc7cyBib3VuZGVkIGJ5IHRoZSBpbm5lciBtZW1icmFuZS4=

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|17149d94900356″ question_number=”9″] In the diagram below, ATP synthase in a chloroplast would be found at

[textentry single_char=”true”]

[c]IG M=[Qq]

[f]IFllcy4gTGV0dGVyIOKAnGPigJ0gaW5kaWNhdGVzIHRoZSB0aHlsYWtvaWQgbWVtYnJhbmUsIHdoaWNoIGlzIHdoZXJlIHRoZSBBVFAgc3ludGhhc2UgY2hhbm5lbC9lbnp5bWUgaXMgZm91bmQgaW4gYSBjaGxvcm9wbGFzdC4=[Qq]

[c]ICo=[Qq]

[f]IE5vLiBIZXJlJiM4MjE3O3MgYSBoaW50LiBBVFAgc3ludGhhc2UgaXMgYSBjaGFubmVsIGFuZCBlbnp5bWUgdGhhdCB1c2VzIHRoZSBraW5ldGljIGVuZXJneSBvZiBkaWZmdXNpbmcgcHJvdG9ucyB0byBjYXRhbHl6ZSB0aGUgZm9ybWF0aW9uIG9mIEFUUCBmcm9tIEFEUCBhbmQgcGhvc3BoYXRlLiBUbyBmdW5jdGlvbiwgaXQgaGFzIHRvIGJlIGxvY2F0ZWQgb24gYSBtZW1icmFuZSB0aGF0IGVuY2xvc2VzIGEgY29uZmluZWQgc3BhY2UgdGhhdCBwcm90b25zIGNhbiBiZSBwdW1wZWQgaW50by4gV2hpY2ggbWVtYnJhbmUgaW4gYSBjaGxvcm9wbGFzdCBjb3VsZCBmaXQgdGhhdCBkZXNjcmlwdGlvbj8=

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|171455671f6756″ question_number=”10″] In the diagram below, ATP synthase in a mitochondrion would be found at

[textentry single_char=”true”]

[c]IG k=[Qq]

[f]IFllcy4gVGhlIGxldHRlciDigJxp4oCdIGluZGljYXRlcyB0aGUgaW5uZXIgbWl0b2Nob25kcmlhbCBtZW1icmFuZSwgd2hpY2ggaXMgd2hlcmUgdGhlIEFUUCBzeW50aGFzZSBjaGFubmVsL2VuenltZSBpcyBmb3VuZCBpbiBhIG1pdG9jaG9uZHJpb24u[Qq]

[c]ICo=[Qq]

[f]IE5vLiBIZXJlJiM4MjE3O3MgYSBoaW50LiBBVFAgc3ludGhhc2UgaXMgYSBjaGFubmVsIGFuZCBlbnp5bWUgdGhhdCB1c2VzIHRoZSBraW5ldGljIGVuZXJneSBvZiBkaWZmdXNpbmcgcHJvdG9ucyB0byBjYXRhbHl6ZSB0aGUgZm9ybWF0aW9uIG9mIEFUUCBmcm9tIEFEUCBhbmQgcGhvc3BoYXRlLiBUbyBmdW5jdGlvbiwgaXQgaGFzIHRvIGJlIGxvY2F0ZWQgb24gYSBtZW1icmFuZSB0aGF0IGVuY2xvc2VzIGEgY29uZmluZWQgc3BhY2UgdGhhdCBwcm90b25zIGNhbiBiZSBwdW1wZWQgaW50by4gV2hpY2ggbWVtYnJhbmUgaW4gYSBtaXRvY2hvbmRyaW9uIGNvdWxkIGZpdCB0aGF0IGRlc2NyaXB0aW9uPw==

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|17140ae5a2e756″ question_number=”11″] Pretend that a chloroplast could have a goal (besides reproducing itself). If a chloroplast had a goal, what letter below could best represent it?

[textentry single_char=”true”]

[c]IG U=[Qq]

[f]IFllcy4gTGV0dGVyIOKAnGXigJ0gcmVwcmVzZW50cyBhIHNpbXBsZSBzdWdhci4gVGhhdCYjODIxNztzIHRoZSBrZXkgb3V0cHV0IG9mIHBob3Rvc3ludGhlc2lzLiBJZiBhIGNobG9yb3BsYXN0IGhhZCBhIGdvYWwsIG1ha2luZyBzdWdhciB3b3VsZCBiZSBpdC4=[Qq]

[c]ICo=[Qq]

[f]IE5vLiBUaGluayBvZiB0aGUgY2hsb3JvcGxhc3QgYXMgYW4gb3JnYW5lbGxlLCB3aXRoIGEgZnVuY3Rpb24uIEl0cyBmdW5jdGlvbiBpcyB0byBtYWtlIHNvbWV0aGluZy4gV2hhdCBpcyBpdD8=

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|1713b96802bb56″ question_number=”12″] Pretend that a mitochondrion could have a goal (besides reproducing itself). If a mitochondrion had a goal, what letter below could best represent it?

[textentry single_char=”true”]

[c]IG s=[Qq]

[f]IFllcy4gTGV0dGVyIOKAnGvigJ0gcmVwcmVzZW50cyBBVFAuIFRoYXQmIzgyMTc7cyB0aGUga2V5IG91dHB1dCBvZiBjZWxsdWxhciByZXNwaXJhdGlvbi4gSWYgYSBtaXRvY2hvbmRyaW9uIGhhZCBhIGdvYWwsIG1ha2luZyBBVFAgd291bGQgYmUgaXQu[Qq]

[c]ICo=[Qq]

[f]IE5vLiBUaGluayBvZiB0aGUgbWl0b2Nob25kcmlvbiBhcyBhbiBvcmdhbmVsbGUsIHdpdGggYSBmdW5jdGlvbi4gSXRzIGZ1bmN0aW9uIGlzIHRvIG1ha2Ugc29tZXRoaW5nLiBXaGF0IGlzIGl0Pw==

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|1713713a921f56″ question_number=”13″] What letter represents the energy that drives photosynthesis?

[textentry single_char=”true”]

[c]IG 4=[Qq]

[f]IFllcy4gTGV0dGVyIOKAnG7igJ0gcmVwcmVzZW50cyBsaWdodCwgdGhlIGVuZXJneSB0aGF0IGRyaXZlcyBwaG90b3N5bnRoZXNpcy4=[Qq]

[c]ICo=[Qq]

[f]IE5vLiBUaGluayBvZiB0aGUgd29yZCAmIzgyMjA7cGhvdG9zeW50aGVzaXMuJiM4MjIxOyBUaGUgJiM4MjIwO3Bob3RvJiM4MjIxOyBwYXJ0IHJlZmVycyB0byB3aGF0Pw==

Cg==

[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|17132b612d6756″ question_number=”14″] What letter represents the energy that drives cellular respiration?

[textentry single_char=”true”]

[c]IG U=[Qq]

[f]IFllcy4gTGV0dGVyIOKAnGXigJ0gcmVwcmVzZW50cyBhIHNpbXBsZSBzdWdhci4gVGhlIGVuZXJneSBmcm9tIHRoYXQgc3VnYXIgaXMgd2hhdCBkcml2ZXMgY2VsbHVsYXIgcmVzcGlyYXRpb24u[Qq]

[c]ICo=[Qq]

[f]IE5vLiBUYWtlIGEgbG9vayBhdCB0aGUgZGlhZ3JhbSwgYW5kIGxvb2sgYXQgdGhlIHR3byBpbnB1dHMgZm9yIGEgbWl0b2Nob25kcmlvbi4gT25lIG9mIHRoZW0gcHJvdmlkZXMgdGhlIGVuZXJneSB0aGF0IGRyaXZlcyBjZWxsdWxhciByZXNwaXJhdGlvbi4=[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|1712e587c8af56″ question_number=”15″] In the diagram below, the inputs provided to the Calvin cycle at letter “b” would include ATP and [hangman]

[c]IE5BRFBI[Qq]

[f]IEdvb2Qh[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|1712a2026fdb56″ question_number=”16″] In the diagram below, the inputs provided to the Calvin cycle at letter “b” would include NADPH and [hangman]

[c]IEFUUA==[Qq]

[f]IEdvb2Qh[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|17125c290b2356″ question_number=”17″] In the diagram below, which letter indicates the source of the electrons that flow in non-cyclic electron flow?

[textentry single_char=”true”]

[c]IG 0=[Qq]

[f]IFllcy4gTGV0dGVyIOKAnG3igJ0gcmVwcmVzZW50cyB3YXRlciwgd2hpY2ggaXMgdGhlIHNvdXJjZSBvZiB0aGUgZWxlY3Ryb25zIGluIG5vbi1jeWNsaWMgZWxlY3Ryb24gZmxvdy4=[Qq]

[c]ICo=[Qq]

[f]IE5vLiBUYWtlIGEgbG9vayBhdCB0aGUgZGlhZ3JhbSwgYW5kIGxvb2sgYXQgdGhlIHR3byBpbnB1dHMgZm9yIGEgY2hsb3JvcGxhc3QuIE9uZSBvZiB0aGVtIHByb3ZpZGVzIHRoZXNlIGVsZWN0cm9ucy4=[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|171218a3b24f56″ question_number=”18″] The structure at “c” is a [hangman] membrane.

[c]IHRoeWxha29pZA==[Qq]

[f]IEV4Y2VsbGVudCE=[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|1711d07641b356″ question_number=”19″] The enzyme found in both “c” and “i” that uses the flow of protons to generate ATP is called ATP [hangman]

[c]IHN5bnRoYXNl[Qq]

[f]IENvcnJlY3Qh[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|171185f4c53356″ question_number=”20″] The particles that are pumped into “d” and “h” are [hangman]

[c]IHByb3RvbnM=[Qq]

[f]IEdyZWF0IQ==[Qq]

[q dataset_id=”SMV_PSN_Comparing Photosynthesis and Respiration|1710fc9607a756″ question_number=”21″] The membrane transport process that brings protons from “d” to “b” and from “h” to “j” is [hangman] diffusion

[c]IGZhY2lsaXRhdGVk[Qq]

[f]IEV4Y2VsbGVudCE=[Qq]

[x]

[restart]

[/qwiz]


6. Cellular Respiration Click-On Challenge

[qwiz style=” width: 600px !important; min-height: 400px !important;” quiz_timer=”true” random=”true” spaced_repetition=”false” dataset_intro=”true” use_dataset=”cellular-respiration-click-on-challenge” qrecord_id=”sciencemusicvideosMeister1961-Cellular Respiration Click-on Challenge (2.0)”]

[h] Cellular Respiration Click-On Challenge

[i] Note the timer in the top right corner. In the quiz that follows, aim for accuracy and speed.

[/qwiz]


7. Photosynthesis Click-On Challenge

[qwiz style=” width: 600px !important; min-height: 400px !important;”quiz_timer=”true” use_dataset=”Photosynthesis Click-On Dataset” dataset_intro=”true” spaced_repetition=”false” qrecord_id=”sciencemusicvideosMeister1961-Photosynthesis Click On Challenge (U3, 2.0)”]

[h] Quiz 1: Photosynthesis Click-On Challenge

[i] Note the timer in the top right. The goal is speed and accuracy. A good strategy is to take your time the first time through, carefully looking at the feedback statements. Then work at increasing your speed.

[/qwiz]