Name: Period:

Molecular Model Lab

Purpose: To construct 3-D models of molecules and draw their structural formulas.

Procedure:

1. Construct the list of molecules below, using the chemical formula given, the code table for the atoms and the tips given for each one.

2. Draw a two dimensional structural formula of the resulting molecule.

Element	Symbol	Number of Bonds it can form	Color
Hydrogen	Н	1	White
Oxygen	O	2	Red
Nitrogen	N	3	Blue
Carbon	С	4	Black
Sulfur	S	2	Yellow

Tips

- All atoms should have **all** of their electrons occupied. Note: that *doesn't* mean plugging every hole on the model atom with bonds: some of the balls representing a particular atoms have more holes than the atom can form bonds.
- To represent double bonds, your kit has a few extra-long bendable sticks that can be paired together.
- Whenever possible, get into the habit of building your molecules (especially larger ones) by building functional groups, and then adding these to the molecule.

Note: feel free to use your phones to take pictures of these molecules. Upload them to a google doc, which you can share with your instructor or fellow students at some point.

Molecules to Build and Draw

Name	Chemical Formula	Structural Formula	Notes
1. Hydrogen	H ₂		The most common molecule in the universe.
2. Oxygen	O_2		Needed for aerobic respiration.
3. Water	H ₂ O		By weight, the main component of living things.
4.Methane	CH ₄		Natural gas, produced by bacteria in your gut; also used as a fuel.
5.Ethanol	CH ₃ CH ₂ OH		Drinking alcohol
6.Glucose: you can make both the ring and the straight chain form.	C ₆ H ₁₂ O ₆		At the cellular level, this is the main source of energy for all living things.

Name	Chemical	structural formula	Notes
- Tanic	formula	Structural formula	
7.Amino acid: 1 carbon atom with 4 different attachments: Group 1 (amino) NH2, Group 2 (carboxyl) COOH, Group 3: H atom, Group 4: "R-group" or "side chain." Use an H, or look up another possibility in Campbell	varies		Building blocks of proteins (the all important substance that makes up muscles and enzymes
8. Dipeptide: build 2 amino acids (choose the functional group). Combine them by removing an H from the amino group of one amino acid and and OH from the carboxyl group of the second.	varies		Two monomers possibly on their way to becoming a protein.
9. Saturated Fatty acid (note the (CH ₂) ₅ , which indicates a 5 carbon long hydrocarbon chain). Remember that COOH is a carboxyl group.	CH ₃ (CH ₂)5 - COOH		Building block of fats. Fats are used for energy storage and insulation.
10. Sucrose (a disaccharide)	C ₁₂ H ₂₂ O ₁₁		
11. Unsaturated fatty acid: See # 9 above. Experiment with making the <i>cis</i> form and the <i>trans</i> form	varies with what you create		
12. A DNA Nucleotide Create a five carbon sugar (deoxyribose), a phosphate group, and a nitrogenous base (of which there are four possibilities: feel free to look these up in your textbook or online).	varies with which nucleotide you choose.		the monomer of nucleic acids