Name:		I	Period:	Date:					
CCCTTON	T. T	How DNA Co	ontrols the	e Cell					
Part 1: DN	A, Transcri	ption, Translation							
1.If DNA v 2. If DNA	vere a boss were a king	1. It would be a ba 2. It would be a ki	 It would be a boss that never left the It would be a king that never left the 						
3-5. How does DNA	3. DNA sta	ys in the	, but s	, but sends chemical messages out to the					
stay in control?	4. In the cy	/toplasm,	read the messages and make						
	5. The mes	sages are made of	, a sin	gle stranded	acid.				
RNA, and protein in diagram form									
7. What is transcriptio	n?	When information in g	enes (in the	e) is chai	nged into				
8. What is translation?	,	When information in _		is changed into					
9. The big translation	problem in [DNA has only proteins. How can 4 le	bases. T tters speci	There are fy 20 different thing	_ amino acids in Js?				

Part 2: Checking Understanding

- 1. A nucleic acid that always stays in the nucleus:
- 2. A nucleic acid that goes from the nucleus to the cytoplasm: _____
- 3. The cell's protein factory: _____
- 4. The process of changing DNA into RNA: _____
- 5. The process of changing RNA into protein: _____
- 6. Review: what's the monomer of protein: _____
- 7. Review: All of the monomers of protein are similar in that ...

They differ in that...

Part 3: TWO ANALOGIES FOR INFORMATION TRANSFER FROM FOUR NUCLEOTIDES TO TWENTY AMINO ACIDS

A	В	С	D	Ε	F	G	Н	I	J	K	L	М	N	0
aaa	aac	aca	agg	agu	auu	caa	cau	cgu	cgg	cuu	gag	gac	gau	gca
Ρ	Q	R	5	Τ	U	V	W	X	У	Ζ		:		
gcu	gta	guc	guu	uaa	uac	uau	uca	ucc	ucu	uuα	uuc	uuu	aau	

Now, here's a coded message. Try to decipher it:

caa	agu	gau	agu	uaa	cgu	aca		cgu	gau	auu	gca
cgu	guu		aca	gca	agg	agu	agg		auu	gca	guc
cgu	gau		uaa	cau	agu		agg	gau	aaa		
aac	aaa	guu	agu	guu	uuu		ممم	aau	aca	aau	uaa
ممم	gau	agg		caa	uuc						

Reflect! This exercise shows how

It relates to what happens in cells because...

The "MESSAGE"

& ; >]~=	:[?	}/	{(}&>	:[:*	\:=>	&;:*	/:(*&	&;>	<[~
,}< >	;*	;}{:	> <	&;>[&;:*	<://>	·(>[&	,}< >	;* '	

&(~[*\~&> <

Code One

İ	@	#	\$	6	%	^	&	*	()	{	}	[]	\	=	+	:	;	?	/	>	<	,		~
1	2	3	4	5	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Сс	de T	wo																								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	9 2	0 2	1 7	22	23	24	25	26
Ζ	У	Х	W	V	U	Т	S	R	Q	Ρ	0	Ν	Μ	L	Κ	J	Ι	F	I G	; F	:	E	D	С	В	Α

Reflect! This exercise shows how ...

It relates to what happens in cells because...

Part 6. Transcription practice.	LT YOU WERE DINA polymerase, nov	v would you transcribe
DNA: T T A C G C	DNA: A T T C G G A	DNA: T T C A G G T C A A
RNA:	RNA:	RNA:

Checking understanding: Pretend that you're RNA polymerase. Explain the steps by which you would transcribe some DNA into RNA.

Sequencing words:	
 first, second 	
next, later, then	
before/after	
• beginning, middle,	
end	
while	
• now	
finally	
earlier	
 For the past 	
 previously 	
since	
eventually	
 initially 	
 meanwhile 	
 immediately 	
during	
prior to	
 subsequently 	
 simultaneously 	
 preceding 	
following	
 concluding 	

SECTION II. Translation and the Genetic Code

1. Review:	During <i>transcription</i> , RNA polymerase attaches to the beginning of a <i>gene</i> (a segment of DNA that gets								
transcription	trans	lated into a protein).	A sequence of base	s known as a <i>promote</i>	er in the DNA "tells"	the RNA polymerase			
	where	e to bind.				(
	The F	RNA polymerase then	pries open the DNA	. One strand of the	DNA serves as a ter	nplate that allows			
	comp	lementary RNA nucle	otides to form hydr	ogen bonds with it. A	is a matching RNA n	ucleotide binds with			
		omplementary DNA po	artner, the RNA poly	merase catalyzes a	sugar-phosphate bor	id between one RNA			
	nucle	otide and the next, c	reating an RNA poly	mer.		·····			
	When the RNA polymerase reaches the end of the gene, it releases the RNA. In a prokaryotic cell, the								
	RINA	is then ready for act	tion. In a eukaryotic	cell, that RINA is usu	ially moalfled, and tr	ien has to fina its			
Driefly gumm		but of the nucleus and	a into the cytoplasm.						
Briefly Summo	narize the process of transcription in six steps:								
1.		2. KINA poi. pi les	5.	7	s. Folymeruse	0.			
		open			of the gene				
2 Comptin	Messenger DNA is a code. The ribosome translates this code into protein. This code is called the								
2. Genetic	GENETIC CODE It's a universal code pretty much the same in all living things. In this code IS called the								
coders	GEINE IIC CODE. IT's a universal code, pretty much the same in all living things. In this code, THREE RNA bacac code for ONE amino acid. These three bacac are known as a CODON (from "code", are")								
	Duse	c with any callular pr	lo uciu. These Three	buses are known as a	ut any "higher intell	ice + one).			
J. TRINAS	one ir	n the cell who can rec	d think etc. The tr	anslator in this proc	ess is transfer DNA	(+DNIA)			
codons and	+l	RNAs (7 at right) ar	e bilingual molecules	One end of a tRNA	consists of 3				
translation	RNA	A bases that complem	ent an RNA codon.]	These three bases ar	re called an				
	"ant	i-codon." (8) The oth	er end carries a spe	cific amino acid (6).					
	Т	he process of translo	ation starts with a m	olecule of messenge	r RNA coming	00			
	out	of the nucleus and er	ntering the cytoplasm	n (shown at 1). Next,	, a ribosome (2)				
	atta	ches to the mRNA, a	and starts moving alo	ng its length. The m	RNA sits on the				
	ribosome in a way that exposes the mRNA codons (shown at 5). The								
	complementary match between codon (5) and tRNA anticodon (8) ensures that								
	only the correct amino acid (6) will be brought by a tRNA (7) to the ribosome.								
	The ribosome catalyzes peptide bonds between adjacent amino acids, resulting in								
	the	formation of a prote	in (4).						

4. Translation Overview

Key to diagram. Use the text above ("tRNAs, anticodons, and translation") to identify all the parts in the diagram.

1	4	7
2	5	8
3	6	

Summarize the process of translation in 5 steps.

Summunze me process	of munsiumon in 5 steps.			
1.	2.	3.	4	5. Ribosome reaches the end of mRNA and releases the protein

5. THE GENETIC CODE AND	Ala= alanine	Gln = glutamine	Leu= leucine	Ser=serine
PROTEIN SYNTHESIS	Arg= arginine	Glu= glutamate	Lys= lysine	Thr=threonine
	Asn= asparagine	Gly = glycine	Met = methionine	Trp= tryptophan
	Asp= aspartate	His= histidine	Phe= phenylalanine	Tyr = tyrosine
	Cys= cysteine	Ile= isoleucine	Pro= proline	Val= valine

The **central dogma** of molecular genetics is **DNA makes RNA makes protein**. As we've seen, how this happens involves some complicated cellular machinery, but figuring out what protein will be made from DNA or RNA is easy. It involves reading a "genetic code dictionary."

The dictionary is always based around RNA and its four bases A, U, C, and G. Two versions are shown below. In either case, you always start by breaking the RNA into codons (groups of 3 bases).

	Sta	indard, Tab	ular Dictior	ary		Circular Dictionary
		Secon	d base			
	U	С	A	G		GLY PHE LEU
U	UUU UUC PHE UUA UUG LEU	$\left. \begin{matrix} UCU\\ UCC\\ UCA\\ UCG \end{matrix} \right\} SER$	$\left. \begin{smallmatrix} UAU\\ UAC\\ UAC\\ UAG\\ UAG \end{smallmatrix} \right\} {\tt STOP}$	UGU UGC UGA STOP UGG TRP	U C A G	ASP A G U C A G U C A G U C A G TYR ALA G A G U C A G U C A G TYR ALA A G A G U C A G TYR
F r s t	CUU CUC CUA CUG	CCU CCC CCA CCG	$\left. \begin{smallmatrix} CAU \\ CAC \end{smallmatrix} \right\} HIS \\ \left. \begin{smallmatrix} CAC \\ CAG \end{smallmatrix} \right\} GLN$	CGU CGC CGA CGG	U T C h i G d	$\begin{array}{c c} U & C \\ VAL \\ C \\ U
b a s e	AUU AUC AUA AUG START	ACU ACC ACA ACG	$\left. \begin{smallmatrix} AAU\\ AAC \end{smallmatrix} \right\} \begin{array}{c} ASN \\ AAA \\ AAG \end{smallmatrix} \right\} \begin{array}{c} LYS \end{array}$	$\left. \begin{smallmatrix} AGU\\ AGC \end{smallmatrix} \right\} \; \begin{array}{c} \text{SER} \\ \hline \\ AGA\\ AGG \end{smallmatrix} \right\} \; \begin{array}{c} \text{ARG} \\ \hline \\ \end{array}$	Ub Ca Se G	SER U A C U G A LEU
G	GUU GUC GUA GUG	GCU GCC GCA GCG	$\left. \begin{smallmatrix} GAU\\ GAC \end{smallmatrix} \right\} \ ASP \\ \left. \begin{smallmatrix} GAA \\ GAG \end{smallmatrix} \right\} \ GLU$	GGU GGC GGA GGG	ASIN GACUGACUGACUGACHIS THR MET ILE ARG	
Find	the 1 st base	on the left	t, the secon	d base on to	Find the 1 st base in the center, the second in the	
and [.]	the 3 rd base	on the righ	ıt.		middle ring, and the last in the outermost ring.	

Example:	Problem 1
Translate the following mRNA into protein.	mRNA: AUG CCC AAA GGG UUU UAG
mRNA: AUG CGU UUC GGU UAC UGA	Amino
Amino MET ARG PHE GLY TYR STOP acids	acids
Problem 2: Transcribe the DNA into RNA, then	Problem 3: same instructions as problem 2
translate the RNA(advice: Use lines to divide the	
bases into triplets)	DNA TACAGCCTCGACAAG
DNA TACGCAAAGCCAATGACT	mRNA:
MRNA: Amino	Amino
acids	acids
Problem 4: Figure out which RNA and DNA would code	Problem 5: Figure out the DNA and amino acids from
for the following sequence of amino acids (multiple	the following mRNA
answers are possible)	DNA
DNA	mRNA: CUCAAGUGCUUC
mRNA:	Amino
Amino GLY ASN VAL LEU CYS VAL	acids
acids	

SECTION III. Understanding Protein Synthesis

1. Protein Synthesis: The details

The first phase of protein synthesis is called **initiation**. Initiation begins as a strand of mRNA leaves the nucleus. The small subunit of a ribosome attaches to the leading end of the mRNA. A tRNA carrying the amino acid methionine binds with the start codon AUG. Initiation ends as the large subunit of the ribosome binds with the small subunit, completing the ribosome.

Elongation involves synthesis of an increasingly long chain of amino acids, or **polypeptide**. A second tRNA, carrying a second amino acid, comes to the ribosome, and sits on the codon immediately adjacent to the start codon. The ribosome catalyzes a peptide bond between the first amino acid that had been brought to the ribosome, and this new amino acid, forming a dipeptide (a mini-protein with two amino acids). Next, the ribosome moves over to the next mRNA codon. As another tRNA bearing a third amino acid comes to the ribosome, the first tRNA gets discharged into the cytoplasm. The ribosome then catalyzes another peptide bond, forming a tri-peptide (a chain of three amino acids). This process of ribosomal movement from one codon to the next, arrival of new tRNAs with new amino acids, and formation of new peptide bonds results in an increasingly long polypeptide.

The process ends only when the ribosome reaches a stop codon. This codon, instead of coding for an amino acid, codes for a protein called a *release factor* to enter the ribosome. The release factor causes the polypeptide to disconnect from the last tRNA, and for the entire initiation complex (ribosome, tRNA, and mRNA) to fall apart. The polypeptide folds up into its three dimensional shape, completing the protein synthesis process.

2. A storyboard for protein synthesis. Complete the text in the right column below.

Anti-	mRNA	start codon
AUG	nucleus	†RNA
methionine	Р	UAC
mRNA	small	

A A Codon Codon Codon Complementary E Enzyme Hydrogen Large

Peptide Ribosome translocation

Writing About Protein Synthesis

Use the sequencing words below to write about protein synthesis from several perspectives.

Sequencing words: • first, second • next, later, then • before/after • beginning, middle, end • while Use these content specific terms • mRNA, nucleus, small subunit of factor, Pretend that you're a ribos	 now finally earlier For the past previously since of the ribosome, large subunit of the rite ome. From the ribosome's previously	eventually initially meanwhile immediately during prior to posome, codon, anti-codon, amino acid perspective, describe how players	subsequently simultaneously preceding following concluding d, peptide bond, protein, release rotein synthesis occurs.
Now pretend that you're m same sequencing and con	RNA. From mRNA's perspe tent specific words listed ab	ctive, describe how protein ove.	synthesis occurs. Use the

Replication, Transcription, Translation

1. Compare and contrast these three processes:

·	Replication	Transcription	Translation
What does it produce?			
Why is this process important?			
Where does it happen?			
Key enzymes/cell parts			
How does the process work?			

2. Now write a few paragraphs comparing and contrasting replication, transcription, and translation.

Some key content	
ter	ms:
•	complementary
•	DNA polymerase

- RNA polymerase
- Ribosome
- polymerization
- monomers
- polymers
- nucleus
- cytoplasm

Compare and contrast terms

- are similar because
- have in common
- difference between
- on the other hand
- just like
- in contrast
- compared to
- as opposed to
- a distinction between
- share common attributes
- synonymous with
- just as
- whereas
- by comparison

Protein Synthesis Rap

http://www.sciencemusicvideos.com/protein-synthesis-rap-music-video/

Look at what's coming out of the nucleus Destined for a ribosome, a strand of mRNA It's got the code, the information, For the protein we'll be making today

The RNA message is organized Into codons, that's a sequence of bases three That spell out one and only one amino acid A genetic code that works universally

A codon has its match in an anti-codon Three bases on a tRNAs bottom side tRNA, it's job is to bring amino acids To ribosomes so proteins can be synthesized

CHORUS

mRNA, tRNA and ribosomes plus amino acids make a protein making machine Read the codon, make a polypeptide That's translation – cells synthesizing proteins

The small subunit of a ribosome binds With that mRNA's leading end And slides until it reaches start codon AUG Indicating where translation begins

A ribosome has three binding sites Where tRNAs can bind The "A" site's first, "P"s next, then "E" And the E's got an exit sign

The first tRNA in this translation process Binds the start codon in binding site "P" And that tRNA carries an amino acid That goes by the name of Methionine.

And now to finish this initiation The ribosome needs to be made complete The large subunit binds the small subunit Now we're ready for translation to proceed.

CHORUS

Now we're ready for next step: elongation An amino acid carried by a new tRNA With an anticodon matching with the second codon Binds at the site called "A"

Then the ribosome carries out an enzymatic action. Binding these amino acids with a peptide bond So a dipeptide hangs on the "A" site tRNA Watch translation move along!

Next the ribosome shifts exactly one codon over In a move that we call "translocation" So the "A" site's empty, and the "P" site's loaded And the first tRNA's in the "E" location

"E" site tRNA makes its exit And the next tRNA fills the site called "A" And the ribosome catalyzes away In your cells it happens every second, every day

And watch that polypeptide, see it get longer As each and codon gets translated Ribosomal robots reading RNA instructions As proteins get created!

CHORUS

Bridge

Protein synthesis! Translation! (repeat 4X)

We started with initiation, which was followed By part two of translation: elongation Now it's time to finish synthesizing this protein, With a finale called termination.

When the ribosome gets to a stop codon There's no tRNA anti-codon that matches So "A" site's bound by a release factor: The polypeptide detaches

tRNAs at P & E sites float away Ribosome breaks apart, no longer one The polypeptide folds into functional protein Translation is done!

CHORUS